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Abstract 
Red rot in sugarcane is a devastating fungal disease caused by Colletotrichum falcat um. It leads to wilting, red discoloration, and 

yield losses, which can impact sugar production globally. Red rot hampers sugarcane production, causing yield reductions, and 

economic losses, and affecting the nation’s sugar industry demanding stringent disease management strategies. There is a need of 

a system that detects the red rot disease at an early stage before it spreads. Transfer learning enhances agricultural models, 

leveraging pre-trained data for improved crop predictions, resource optimization, and sustainability. In this article, we have 

proposed a transfer learning-based VGG16 model for the detection of red rot disease in sugarcane on a large dataset. The model 

achieves a remarkable 98.85% accuracy and an F1 score of 0.93 in early red rot detection in sugarcane. This work underscores the 

potency of leveraging re-trained models for crop disease identification, offering a promising avenue for proactive disease 

management. This research marks a substantial step towards enhancing crop yield and sustainability, presenting an accessible and 

impactful technological solution for early disease detection in sugarcane, ultimately benefiting agricultural practices. 
Keywords: Smart Agriculture, red rot sugarcane, Deep Learning, Transfer Learning, Machine Learning.

Introduction 
Red rot disease in sugarcane[1], caused by the fungus 

Colletotrichum Falcatum[1], [2], poses a significant threat to 

global sugarcane production[3]. This destructive pathogen 

targets the plant’s stalk[4], resulting in reddish-brown 

lesions[1] as shown in Figure 1 and cankers that compromise 

structural integrity[3]. Infected plants exhibit stunted growth, 

reduced sucrose content, and ultimately diminished sugar 

yields. Red rot spreads through contaminated planting 

materials[5], soil, and water, making it challenging to 

control[6]. 

Figure 1. Sugarcane plants affected by Red Rot 

Pakistan’s sugarcane production is a vital component of its 

agriculture sector, thriving in the subtropical climates of 

Punjab province and Sindh Province[7]. The industry 

characterized by both large commercial farms and small 

independent growers contributes significantly to the national 

economy and provided the extensive employment 

opportunities[7]. However, according to an international 

report from 2000 to 2022 a loss in sugarcane yield has been 

observed due to the diseases associated with the sugarcane 

plant such as red rot, mosaic, rust, yellow leaf as shown in 

figure 2[8][9]. Red rot is a major and economically significant 

disease that affects the sugarcane plants badly[10]. Early 

detection of red rot in sugarcane is crucial. Identifying the 

initial symptoms promptly enables timely intervention, 

preventing the spread of disease and minimizing the crop 

damage. Swift action and strategic fungicide application is 

key to safeguarding sugarcane crops, ensuring better yields 

and maintaining overall agricultural sustainability[11]. 

Figure 2. Production of sugar cane in Pakistan 2000 to 

2022[8] 

In agriculture, the integration of deep learning [12] and 

transfer learning [13] is revolutionizing the plant disease 

detection [14]. These advance technologies enhance the 

accuracy and efficiency of identifying the diseases in the crop, 

including plants like sugarcane. Deep learning with its neural 

network architecture, allows for more intricate feature 

extraction improving diagnostic precision. Transfer learning 

further optimizes performance by leveraging pre-trained 

models on large datasets for related tasks [15]. The synergy 

of these technologies quips farmers with the powerful tools to 

swiftly and accurately identify diseases, facilitating timely 

interventions, minimizing the crop losses and promoting the 

sustainable agricultural practices [16]. 

In this study, implementing transfer learning with VGG16 

model, the research achieves a remarkable 98.85% accuracy 

and an F1 score of 0.93 in early red rot detection in 

sugarcane. This work underscores the potency of leveraging 
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re-trained models for crop disease identification. The 

findings emphasize the model’s robust performance in 

accurately identifying the red rot symptoms, offering a 

promising avenue for proactive disease management. This 

study provides critical progress in development of a potential 

technological tool that can be most likely put to actual use 

for proper and timely detection of diseases pertaining the 

sugarcane crop, ultimately leading it towards higher 

productivity levels and better sustenance. Offering a quick 

and financially sound way to identify disease, this advance 

could have major implications for agricultural practices as 

well as improved efficiency across the sugarcane industry. 

Organization of this article is as: section 2 is for related work, 

section 3 is for Materials and Methods, Section 4 is for results 

and Discussion, Section 5 is for conclusion. 

Related Work 
V. Tanwar et al. [17] presented a Convolutional Neural

Network (CNN) inspired model for detecting red rot disease

in sugarcane with 93% accuracy. Although this marks a

significant upgrade to the state of art, it still is not good

enough when positioned with respect ot our model. Tanwar et

al. performance metrics ' s model, which also shown the

acceptable accuracy and robustness may need to perform

more optimization in addition to some validation works in

future for its practical use across different agricultural

settings.

Mostafizur et al. [18] has used a YOLO based model to detect

the sugarcane diseases with an accuracy of 96.6%. However,

work by them had nothing to do with red rot disease which is

an important stress in sugarcane cultivation. Moreover,

although the model just performed well in all those common

cases and not for any other type of disease as they were hoped.

This limitation highlighted further needs to improve and test

the model for greater generalizability across sugarcane

diseases.

Manavalan, R. et al[19]. In view of the rapid diagnosis and

information discussed for sugarcane disease, various machine

learning techniques associated with Image processing are

assessed in state-of-the-art. This report will review their work

and explore the potential of these technologies to increase

both quality and trust in food safety by speeding up disease

detection for agricultural use. But the researchers caution that

their study is survey-based and lacks experimental validation

of said techniques This lack of empirical verification may

restrain the direct applicability of their findings to actual

systemic conditions.

Salgadoe et al.[20] pioneers the use of machine learning on

UAV multispectral images for white leaf disease detection in

sugarcane, showcasing potential advancements in precision

agriculture and disease monitoring. However, potential

limitations may arise from the dependency on accurate image

acquisition conditions, and generalizability maybe affected by

variations in environmental factors and diverse field 

conditions. 

Mohd et al. [21] presented a new deep learning approach in 

detecting sugarcane diseases, demonstrated the potential 

improvement of detection accuracy and efficiency applicable 

to multiple agricultural protocols. Nevertheless, these may be 

accompanied by challenges about the interpretability of 

models as well as data accessibility and a high computational 

cost that prevent an immediate practical use of our framework 

in some contexts. 

Prakruthi et al.[22] contributes by applying deep learning 

techniques to effectively detect sugarcane leaf diseases, 

demonstrating the potential for accurate and automated 

disease identification in agricultural settings. However, 

limitations may arise from the need for large labeled datasets 

and model performance might be influences by variations in 

environmental conditions potentially in impacting real-world 

applicability.  

Sujithra et al. [23] Does Performance Analysis of a D-Neural 

Network for Banana and Sugarcane Plant Leaf Disease 

Classification: An Effective Insight on the Efficiency of 

These Networks. Nonetheless, possible drawbacks include a 

lack of robustness to hyperparameter tuning and reduced 

generalizability with different datasets or disease severity 

impairing the model performance in more diverse agricultural 

settings. 

Materials and Methods 

3.1 – Dataset 
The dataset utilized in this study was sourced from Mendely 

data repository and focused on red ro disease in sugarcane 

plants[24] and also we have collected some data from 

Shakargarh city in Punjab Pakistan, 32°15'43"N 75°09'15"E 

of such sugarcane leaves affected by red rot.  The dataset 

consisted of 2000 high resolution images, comprising 900 

images for training and 1100 images for testing. The dataset 

contains multiple images that display different types of red rot 

on sugarcane plants. These images offer a diverse 

representation of the disease across various sugarcane fields 

and environmental conditions. The goal of this 

comprehensive dataset is to train and evaluate the model on a 

wide range of red rot instances, which will enhance its ability 

to identify fungal diseases in sugarcane leaves more 

effectively.  

Preprocessing 
Prior to model training, a crucial preprocessing phase was 

implemented on the red rot sugarcane dataset. The image, 

initially of varying dimensions, were resized uniformly 64 x 

64 pixels, optimizing computational efficiency. To enhance 

model generalization and mitigate overfitting, data 

augmentation techniques were applied. This involved 

randomly rotating and flipping images, augmenting the 

dataset with various to expose the model to diverse 

perspectives of red rot of sugarcane.  These preprocessing 

steps not only standardized the input size but also facilitated 
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robust model training by introducing variations, ensuring the 

model’s adaptability to different orientations and scales in the 

detection of red rot on sugarcane leaves. 

 
Figure 3. Dataset collection location 32°15'43"N 

75°09'15"E 

Model Architecture  
With a focus on transfer learning using the VGG16 

architecture, a Convolutional Neural Network (CNN) was 

used in the model architecture for the detection of red rot in 

cashew leaves. Using big datasets and pre-trained models to 

improve the learning of features pertinent to the target task in 

this case, red rot identification is known as transfer learning. 

Because it can extract complex hierarchical features, the base 

VGG16 model which is well-known for its deep architecture 

and performance in image classification task was used. To 

improve its comprehension of common visual patterns, the 

model was pre-trained on a variety of datasets, including 

ImageNet, before being initialized with weights. To optimize 

the model for binary classification and differentiate between 

cashew leaves infected with red rot and those that are not, a 

customized output layer was incorporated. This layer made it 

easier for the model to anticipate details unique to each 

manifestation of anthracnose. 

VGG16's convolutional layers were essential to the process of 

extracting features. These layers were in charge of identifying 

features specific to areas impacted by red rot, such as edges, 

textures, and forms. The significant features were captured by 

further down sampling the spatial dimensions using max-

pooling layers. Dropout layers were purposefully added 

during training to reduce overfitting and improve model 

generalization by arbitrarily deactivating a portion of neurons. 

The model's capacity to generalize outside of the training set 

was enhanced by this regularization method. The final model 

architecture showed how transfer learning concepts may be 

seamlessly integrated with task-specific fine-tuning and the 

knowledge gleaned from pre-existing datasets. By using this 

method, the model was able to identify complex 

characteristics that are indicative of red rot, which resulted in 

a strong architecture that is ready for red rot infected leave 

detection. The architecture diagram of the proposed model is 

shown in figure 3. 

Fine Tuning 

The pre-trained VGG16 model was adjusted to fit the unique 

requirements of the target job during the fine-tuning stage for 

the detection of red rot disease in sugarcane leaves. For binary 

classification which distinguishes between leaves infected 

with red rot and those that are not a unique output layer was 

added. The freshly added layers of VGG16 underwent 

additional training, but the base layers kept their pre-trained 

weights. By going through this procedure, the model was able 

to modify its acquired features to fit the subtleties of red rot 

symptoms that were unique to sugarcane leaves. Achieving a 

balance between utilizing the pre-trained model's information 

and customizing it to accurately detect red rot was the goal of 

fine-tuning, which improved the model's accuracy for the 

intended agricultural use. 

Training  

During the training phase, the customized VGG16 

architecture was used to optimize the red rot detection model. 

The dataset was divided into training and validation sets, with 

2000 sugarcane leaf photos infected by red rot and 1000 

images unaffected. Training was done on the model using the 

binary cross-entropy loss function and the Adam optimizer 

over a predetermined number of epochs.  

.

 

 
Figure 4. Proposed Model Architecture 
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In order to reduce the difference between expected and actual 

results, the model iteratively modified its internal parameters 

throughout training. The goal of this procedure was to 

improve the model's capacity to generalize outside of the 

training set, guaranteeing accurate red rot identification on 

never-before-seen red rot leaf photos and, in the end, 

supporting strong agricultural disease control. 

Evaluation   

The red rot detection model was rigorously evaluated after 

training to determine how well it performed on a separate test 

set. This collection included 1000 never-before-seen photos 

of sugarcane red rot leaves. Measures like recall, accuracy, 

precision, and F1 score were calculated to give a thorough 

evaluation of the model's performance. To analyze its 

advantages and disadvantages, categorization reports and 

confusion matrices were created. The evaluation phase's goal 

was to determine how well the model could distinguish 

between healthy and anthracnose-infected leaves. A high-

performance evaluation confirmed the model's applicability 

in supporting accurate disease identification and management 

in sugarcane fields by validating its reliability for real-world 

deployment 

Results and Discussion 

Significant results were achieved by structure-tuned VGG16 

model for red rot detection in sugarcane image validating the 

efficiency of system as a very inventive applicable 

agricultural disease management tool. The model exhibited an 

overall accuracy of 98.85% after testing with a mix-type 

dataset containing more than 2000 images and had the 

precision, recall to be about 0.88 and 0.80 respectively The 

above-listed performance metrics confirm the robust ability 

of this model to distinguish red rot affected and healthy leaves 

precisely. The confusion matrix further enforces 

trustworthiness of the model as it reveals low number of False 

Positives and Negatives. For agricultural work, this is 

particularly important for disease management because you 

do not want a false positive to identify where there should be 

no treatment (or vice versa), which otherwise can result in 

unnecessary treatments causing costs and man hours. The 

model achieved an outstanding F1 score of 0.93 and provided 

better accuracy for both precision balance between number 

predicted as having disease, that actually have the disease to 

ones not having the disease i.e true positive/ false positives ) 

and recall measure which generates proportion between 

numbers predicting correctly versus total instances within 

class making it well-suited for real-time plant sugar diagnosis 

in fields. 

There are many prior works that laid the foundation on plant 

disease detection using different machine learning and deep 

learning techniques. For example, V. Tanwar et.al [17] has 

presented a CNN based model specially designed for 

identification of red rot disease in sugarcane, which is able to 

deliver an accuracy fraction of 93 %. Although a sizable 

contribution, this falls just short of the performance metrics 

delivered by our VGG16-tuned model from aforementioned 

research. Similarly, Mostafizur et al. [18] used a YOLO-based 

model for sugarcane disease detection and it attained an 

accuracy of 96.6%. But this work does not focus on red rot 

and any other diseases researched also gave unsatisfactory 

results, which shows the need of more specific models with 

robustness. 

Precision and recall values of the model then, are important 

indicators whether the process is successful for practical 

agricultural scenarios. Definition: Precision (Precision, also 

Positive Predictive Value) — precision is the number of True 

Positives divided by the number of predicted postives. False 

positives can result in treatment of healthy plants causing 

wastage of time, energy and even damage to crop especially 

important in agricultural context. Recall is the percentage of 

true positives in ALL actual that are positive which means 

how great our model can detect red rot. With high recall, the 

vast majority or potentially all of infected plants are correctly 

marked and quick action can be taken. Moreover, considering 

the balanced performance of VGG16-tuned model in terms of 

F1 score (a criterion that takes both false positives and false 

negatives into account) compared to other deep learning 

models presented here it should be well suited for accurate 

disease management. 

Additionally, VGG16-tuned model has a very good efficiency 

and speed. For agriculture disease detection applications the 

processing size and speed must be fast enough so that it is 

only beneficial. The model performed very faster on a large 

dataset of 2000 images. It would be particularly useful for 

real-time disease monitoring and management over large 

expanses of cultivated crops. With its ability to detect diseases 

rapidly and with a high level of precision, the model can help 

in early stage intervention which would otherwise open up 

gates for red rot colonizers and lead to huge crop loss. By 

enhancing the current disease management practices, this 

VGG16-tuned model owing to its better with accuracy and 

precision has shown potential as an important tool of modern 

agriculture. 

Finally, the red rot detection model in sugarcane which is 

tuned from VGG16 outperforms several previous models with 

respect to accuracy and reliability. The accuracy, precision 

and recall metric of the classifier along with its ability to 

process massive files makes it a potential game changer in 

disease management for agriculture. By decreasing the 

opportunities for misdiagnosis and allowing disease detection 

at an earlier stage, our model can help farms run in a more 

sustainable way. These strides speak to the necessity of more 

R&D still in deep learning methods for detecting plant 

disease, moving us toward entirely sustainable and high-

yielding agricultural systems. By highlighting the high 

accuracy in detecting red rot-affected leaves and real-time 

application of this VGG16-tuned model, we emphasized our 

position that it can be considered an effective solution for one 

agriculture challenge. 
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Confusion Matrix 

The confusion matrix offers a thorough analysis of the model 

for detecting anthracnose. With a high recall (0.80) and 

precision (0.88), it demonstrates how well the model works to 

distinguish between cashew leaves that are infected and those 

that are not. The low rate of false positives and negatives 

highlights how well it performs. This graphic illustrates the 

model's sophisticated perception of Anthracnose symptoms, 

supporting its validity for accurate disease detection in 

cashew plantations. 

 
Figure 5. Confusion Matrix for the proposed Model 

Additionally, we have calculated the Matthews correlation 

coefficient (MCC) which is a metric for for evaluating the 

binary classification performance, providing a score between 

-1 and +1 considers true and false positives and negatives 

making it reliable imbalance datasets. A score of +1 indicates 

perfect accuracy, 0 means random chance and -1 signifies 

total disagreement. The MCC here is 0.53 which is 

acceptable. 

𝑀𝐶𝐶 =  
(𝑇𝑃 ∗ 𝑇𝑁)  − (𝐹𝑃 ∗ 𝐹𝑁)

√(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)
             (1) 

𝑀𝐶𝐶 =  
(320 ∗ 430) – (80 ∗ 152)

√(80 + 152)(320 + 430)(80 + 152)(320 + 430)
        (2) 

  
𝑀𝐶𝐶 ≈ 0.53 

 

Recall 
A key criterion in our model evaluation is recall, which 

quantifies how well the red rot detection system can identify 

all diseased sugarcane leaves. The model does exceptionally 

well in capturing a large percentage of true positive instances, 

with a recall of 0.80. This highlights how dependable it is for 

reducing the possibility of missing red rot cases, which is 

essential for efficient disease control in sugarcane crops. The 

recall score with respect to each epoch is illustrated in figure 

6. 

Precision 

An important indicator called precision is used to evaluate 

how well the red rot detection model predicts positive results. 

The model performs exceptionally well in reducing false 

positives, with a precision of 0.88, confirming its 

dependability in accurately recognizing diseased sugarcane 

leaves. In order to maximize disease management and 

minimize needless interventions in non-infected instances, 

precision agriculture approaches require assurance that the 

majority of diagnosed cases of red rot are accurate. This 

metric serves to provide this purpose. The precision score 

over each epoch is illustrated in figure 7. 

 
Figure 6. Recall score of proposed model with respect to 

each epoch 

 
Figure 7. Recursion score of proposed model with respect to 

each epoch 

F1 Score 

The F1 score is a critical parameter that provides a thorough 

evaluation of the red rot detection algorithm by combining 

precision and recall. The model's ability to achieve precision 

and recall harmony is demonstrated by its F1 score of 0.93, 

which strikes a balance between false positives and false 

negatives. This combination guarantees that the model 

minimizes false predictions and correctly identifies infected 

sugarcane leaves, both of which are critical for precision 

disease management in sugarcane crops. When it comes to 
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detecting red rot, the F1 score is very useful for maximizing 

the trade-off between precision and recall. The F1 score over 

each epoch is illustrated in figure 8. 

 
Figure 8. F1 score of proposed model with respect to each 

epoch 

Heatmap 

For the purposes of our research, a heatmap shows how 

strongly red rot is detected in various photos. The heatmap's 

pixel colors represent the probability of red rot presence; 

higher probabilities are indicated by warmer hues. This offers 

a concise and clear summary that makes it simple to identify 

areas that may be infected with red rot. By emphasizing 

regions in the original image that require more examination 

and improving the interpretability of the detection process, the 

heatmap helps make sense of the predictions made by the 

model. In our study we have proposed four types of heatmaps 

i.e.cool warm, Yl0rRd, hot and binary mask one. The results 

of all the proposed heatmaps are illustrated below. 

 
(a) 

 
(b) 

 
(c)  

 
(d)  

Figure 9. (a) coolwarm heatmap, (b)yl0rRd heatmap (c) Hot 

heatmap, (d) Binary masking based heatmap  

 

Model Overall Performance 

The proposed model gave an excellent accuracy of 98.85. The 

model overall performance is mentioned in table 1. Also 

illustrated in figure 10. 

Table 1 

Model overall performance 

Epoch Train 

loss 

Train 

accuracy 

Test 

loss 

Test 

accuracy 

1 0.03 0.6750, ,  0.08 0.750 

2 0.02 0.7917 0.10 0.9017 

3 0.008 0.8350 0.018 0.9750 

4 0.03 0.87 0.089 0.87 

5 0.03 0.98 0.05 0.98 

6 0.05 0.92 0.011 0.979 

7 0.06 0.990 0.02 1.000 

8 0.007 0.9376 0.011 0.990 

9 0.009 0.95 0.009 0.970 

10 0.01 0.979 0.06 0.9885 

 

 
Figure 10. Model Overall performance with respect to each 

epoch 
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Conclusion 

In conclusion, our research that used the VGG16 model to 

detect red rot in sugarcane leaves demonstrated remarkable 

accuracy, with a 98.85% detection rate. This astounding 

accuracy highlights the model's capacity to accurately 

discriminate between healthy and diseased leaves. The 0.80% 

recall we were able to attain indicates how well our method 

worked to identify cases of red rot, which helped us reach a 

balanced F1 score of 0.93. Our model's efficacy goes beyond 

quantitative measurements, providing a sturdy remedy for the 

prompt identification of red rot in sugarcane plants. Our 

findings have important practical ramifications for farmers, as 

they offer a trustworthy instrument for early detection of 

possible disease outbreaks. By allowing for prompt 

interventions, this proactive strategy lessens the effects of red 

rot and enhances the general well-being and yield of 

sugarcane crops in Pakistan. Our study represents a 

breakthrough in applying machine learning to agricultural 

problems, offering real advantages for effective and 

sustainable crop management. 
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