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ABSTRACT 
Reinforcement learning has been employed in recent research articles to optimize the energy storage system scheduling in 

microgrids, aiming to reduce overall system costs. However, applying reinforcement learning in real-time scenarios introduces 

uncertainties and delays due to the extensive training required to develop the optimal policy for the storage system. This work 

addresses these challenges and explores potential solutions for real-time dispatch control actions of the battery in a grid-tied 

microgrid. The study considers different approaches for training the agent, distinguishing between online and offline scheduling 

of the energy storage system. The limitations of these approaches and their implications on real-time performance are also 

analyzed. By developing a comprehensive microgrid model and comparing two training approaches, this research contributes 

to novel insights for efficient real-time scheduling of energy storage systems in grid-tied microgrids. The proposed approach 

presents a promising path towards addressing uncertainties and achieving optimal operation in grid-tied microgrids. In terms 

of average cost per year, the difference between the two approaches is 4% if foresight of the real data is perfect, otherwise the 

real-time approach is more cost-effective. 

Index Terms : Reinforcement Learning, Scheduling, Optimization, Charging, discharging, battery 

Introduction 

Energy management becomes very important in the last one 

decade because the consumption of electricity is increasing 

continuously in every part of the world. Scientists and 

researchers are trying to get optimal solutions for producing 

cheap electrical energy. Renewable energy sources are widely 

used to produce cost-effective electricity. This is the reason 

microgrids have become very popular everywhere because of 

their benefits, whether they are small or large.. Nowadays 

artificial intelligence plays an important role to optimize the 

microgrid to reduce the tariff rate, which is beneficial for both 

producers and consumers both. There are different methods 

developed in previous years through machine learning which are 

used to cut down the cost of production of electricity in a 

microgrid. The ultimate goal of optimization of a microgrid is to 

decrease energy bills while taking into account the energy 

balance and user comfort. 

Microgrids may consists of one or more renwable generating 

sources, storage system, charge controller and inverter. There 

can be two modes in which microgrid can operate; offgrid or  

on grid. In both of these case, if a microgrid is managed through 

proper planning or scheduling its components, for example, an 

energy storage system, it will pay a lot in terms of cost saving  

which is ultimately beneficial for its providers and users. there 

are different algorithms and strategies suggested to manage the 

whole microgrid which is either standalone or connected to the 

main grid, for example selection of renewable energy source, 

forecasting of the load and demand, sizing of the storage system, 

scheduling of storage devices, sitting and many more. 

Machine learning technique named reinforcement learning (RL) 

is used to implement this work. There are a lot of applications 

developed in the past few years using RL. For example; in Atari 

games, robotics, web system configurations, advertising, and 

many more. In our work, RL is used to decide the operational 

mode for the battery: stay idle, charge, or discharge. The RL goal 

is to minimize the cost of electricity and maximize the self-

consumption of locally produced electricity. The 

planning/scheduling regarding operation had done by sequential 

decision-making problem using markov decision process (MDP) 

[1]. The different other algorithms used in optimization 

techniques are linear programming (LP), mixed integer 

programming (MIP). The optimization is generally formulated 

as a mixed  integer nonlinear problem (MINLP) for which there 

is no exact solution method [2]. However, s microgrid modeling 

needs both continuous and discrete decision variables to specify 

on/off states of distributed generated units (DGS), loads, or both 

[3]. It causes the solution space of the consistent optimization 

problem to be nonconvex. That is why classical mathematical 

programming techniques are very difficult to be applied directly 

[4]. Therefore, due to the problem complexity and achieving  

large economic benefits, this area needs considerable attention 

to develop better optimization algorithms.  

Furthermore, previous studies [5-10] have shown that 

microgrids can achieve high performance by developing demand 

response and an optimal framework for utilizing storage devices 

to compensate for physical imbalances. However, these types of 

approaches are commonly used in applications which are 

computationally intensive[11]. Also, they are not suitable for 

online optimization [11]. Most dynamic programming uses 

priority list which have heuristic-based techniques [3]. The 

optimization of microgrids, particularly those with non-linear 

behavior, is being extensively studied to discover improved 

solutions, especially for real-time control of the system.This is 

the reason and motivation to find out more practical solutions to 

deal with the  optimization of the online microgrid problem. 

This work aims to optimize the microgrid by controlling the 

battery commands/actions  to provide cost-efficient, reliable, 

and real-time solution, nevertheless, achieving the following 

targets: 

1. A comfortable and reliable system for the users.

2. Can control the load shedding.

3. Maximise the utilization of renewable energy resources

by reducing the dependency on the main grid.
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4. Increase the cost savings, by using the storage system

optimally.

5. Sell power to the main grid when the utility tariff is

high.

6. The status of charge, discharge, and idle modes are

controlled by respecting the different parameters  of the

battery.

This planning or scheduling mainly consists of model-based and 

non-model-based approaches. These are further divided into 

value-based and policy based approaches which are the types of 

Reinforcement Learning (RL) under the umberella of Artificial 

Intelligence (AI).Example of value based approach in RL is Q 

learning, SARSA, value iteration .  

In [13], the optimization of hybrid microgrid operation is 

proposed, focusing on load sharing control and integration into 

the electricity market. It explores mathematical modeling and 

introduces decision Tree for microgrid optimization. This study 

demonstrates improved voltage profiles using different methods 

and suggests potential for competitive renewable energy 

integration. In another paper [14], introduces a learning-based 

control strategy for microgrid energy scheduling, using 

reinforcement learning algorithms without explicit models. The 

approach optimizes the use of local renewable energy and 

reduces operating costs. Simulations with real data demonstrate 

improved energy utilization efficiency and peak load shaving. 

In this work we are using Q learning. On the other hand, the 

example of Policy based or actor-critic is Reinforce, 

Crossentropy method. It is not necessary that theoptimizationn 

problem can be handled by one type of approach every time. 

This is because all approaches relate to each other in one way or 

another as shown in below figure 1. It is the fact that in different 

kinds of Scenarios, optimization should be done by different 

methods. This is because of the nature of the problem, 

sometimes it is due to the stochastic behaviour of the system or 

due to deterministic and non-deterministic characteristics of the 

environment as well [15].  

Figure 1. Venn diagram of different types of RL 

algorithms[11] 

The extensive literature review of previous similar research by 

combining different parameters and constraints from different 

articles to develop a model and algorithm to optimize the battery 

from RL and dispatch its actions in real time.  

This paper proposes an RL to deal with real-time dispatch 

control actions of energy storage. The above sections describe 

the Introduction and background.  

The rest of this paper is organized as follows. Concept of Q 

learning used in this paper and then the scope of this work. 

Section II presents the main model of the microgrid which is 

used in this article. Section III introduces proposed methods and 

approaches used to optimize the grid tied microgrid. 

Methodology behind the implementation of Reinfocement 

learning in this work is presented in section IV. Finally, the result 

and conclusion are discussed in section V and VI respectively.  

Fundamentals of Q Learning 
Q-learning is a value-based method used in RL to find the

optimal action-selection policy [16]. This is done through a Q

function. The prime goal is to maximize the value function Q

[16]. The Q table helps to find the best action for each state [17].

It maximizes the expected reward by selecting the best of all

possible actions [17]. Q (state, action) returns the expected

future reward of that action in that state. This function can be

estimated by using Q-Learning phenomena, which iteratively

updates Q(s, a) using the Bellman equation[17]. The bellman

equation is given by:

𝑄(𝑠, 𝑎) = 𝑄(𝑠, 𝑎) + 𝛼(𝑅𝑒𝑤𝑎𝑟𝑑 + 𝐺𝑎𝑚𝑚𝑎 ×

 max(𝑄(𝑠′, 𝑎′)) − 𝑄(𝑠, 𝑎)) (1) 

Where: 

• Q(s, a) is the current estimate of the action-value

function for state s and action a.

• α (alpha) is the learning rate, which determines how

much the new information will influence the current

estimate. It is a value between 0 and 1.

• γ (gamma) is the discount factor, which determines the

importance of future rewards compared to immediate

rewards. It is a value between 0 and 1.

• max(Q(s', a')) represents the maximum expected

cumulative reward achievable from the next state s

onwards, considering all possible actions a in the next

state.

This equation allows us to start solving these Morkov’s decision 

processes (MDPs). The Bellman equation is ubiquitous in RL 

and is necessary to understand how RL algorithms work. In 

Bellman equations, values of states are expressed as values of 

other states. By knowing 𝑆𝑡 + 1, we can very easily calculate St. 

This opens up a lot of possibilities for calculating the value for 

each state iteratively since we can know what the current state is 

if we know 𝑆𝑡 + 1. Bellman equations, can determine optimal 

policies and train reinforcement-learning agents. [18]. Initially 

Q learning or RL agent explores (process of exploration) the 

environment and update the Q-Table [19]. When the Q-Table is 

ready, the agent will start to exploit the environment and start 

taking better actions [19].  

Initially during  exploration of the environment Q-table is 

updated by taking random action [16]. Once the Q-Table is 

ready, the agent will start to exploit the environment and start 

taking better actions [16]. 

In RL (Q-learning), the environment is explored randomly and 

after reasonable iterations, the decision is taken according to the 

statistics of the environment [15]. This is called training of the 

agent. The field of RL research describes to learn how to act in 
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an environment from previous experiences [20]. This is the 

beauty and a benchmark of this algorithm over other techniques 

of optimization as it interacts with the unknown environment 

and then experiences gathered are used to optimize some 

objectives such as decrease tariff [19]. This approach, in general, 

solves sequential decision problems by relying on past findings 

[21]. The information may be highly dimensional, for example 

in a certain state, specific action has performed. This is known 

as a policy. The policy used in this work is defined by : 

π(s×a)  = S×A →[1,2,3]  

where π(s,a)  is denoted by the probability that action a (1,2,3) 

may be chosen in state s. 

During the policy formation or training phase, the time is 

consumed which can delay the dispatch of a set of actions to the 

control unit which may not be bearable during online scheduling. 

But the training is necessary to get optimal solutions [22]. Also, 

in practice there are many uncertainties that come from a lack of 

knowledge about the future, for example, load demand varies in 

real-time scenarios or the change of weather can affect the 

renewable sources output, which may affect the optimal solution 

in real time [23]. In this work, this issue had been addressed 

comprehensively by dividing them into two approaches. 

SCOPE OF THIS WORK 
In previous research such as [6][9-15][21][26], not all features 

were simultaneously incorporated, but this paper tries to 

incorporate all possible scenarios in real-time, which will allow 

this algorithm to be used in the current grid-tied structure to get 

the maximum optimization in terms of cost. Also, very helpful 

in different practical applications. Following are the salient 

features of the whole network used in this Research Article. 

1. The renewable energy which is PV here has a priority

to fulfil the demand of load first. If it is not enough then

battery or utility grid or combination of all mentioned

resources are used to fulfill the demand.

2. Battery can be charged from the PV directly. It can be

charged from the utility grid as well.

3. It is also possible that at high tariffs battery can be

discharged into the utility grid as a feed-in tariff to earn

money. Here, there is one fixed feed-in tariff assumed.

Figure 2. Block diagram of the proposed model. 

The proposed algorithm decreases the net energy cost may be by 

considering the future prices by using the current system 

information during the training period. In the training session, 

the convergence of the Q table will be done by tuning the 

hyperparameters of the RL such as exploration versus 

exploitation, learning rate, and discount factor. Once, the 

algorithm learns pedagogy, the policy has been made which is 

followed by the data in real-time. But the main problem is that 

the training which has been made on forecasted data fails or not 

up to the mark due to changing occurring in real time due to 

changes of weather conditions or load demand. So, if training is 

done on forecasted data the forecasting should be appropriate 

and very near to real-time data, best optimization is not possible. 

To deal with this problem the 2nd approach (real-time 

implementation and solution) is proposed in this work which is 

in section 3 below. 

Microgrid Model 
The structure as shown in Fig. 3 composed of renewable energy 
sources (such as PV), the storage energy system, the main grid 
energy, and the loads. The microgrid proposed in this work 
consists of a PV system, a battery as the energy storage system, 
loads, inverters, and a microgrid connected to the main grid. 

The inverters convert the Direct Current (DC) to Alternating 
Current (AC) from the battery and PV. Information on 
electricity prices is available to microgrid users due to the 
microgrid’s connection to the utility grid [27].  

Fgure 3. Proposed microgrid configuration. The microgrid 

includes PV system, battery storage, loads, inverters, and 

connects to the main grid. 

Loads can be varied at different times of the day. If renewable 

sources are present within a system or microgrid, its output is 

dependent on the different conditions, e.g. weather [28]. So, a 

microgrid may supply power either from a renewable source or 

from the main grid to loads. The presence of the battery or 

energy storage system in microgrids has many advantages. One 

of the advantages can supply power to loads in case of absence 

or shortage of power from a renewable source to avoid the use 

of utility power [28]. Also, if the microgrid did not have so much 

demand at the load side, the energy of the battery can be injected 

into the main grid as well depending upon the profit gain after 

selling it to the main grid. For example, if the battery has enough 

storage and in the remaining days there is not much need for 
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storage to run the load then it is cost-effective to sell the power 

of the battery to earn or save more cost [29].  The state of charge 

of the battery should be controlled according to its optimum 

level. It is also part of the management system of the battery to 

discharge up to the optimum level when there is a demand from 

the load side. In other cases, it can deliver or sell its power to the 

main grid. Battery should take care while supplying its energy to 

the main grid that after discharging, it should get a low tariff 

from the main grid or get power from a renewable source to 

charge again. Otherwise, do not sell energy to the main grid to 

save its charging for the next day or  high-demand load 

conditions. By RL, the agent decides by knowing load demand, 

tariff rates, weather conditions, and other necessary  riables that 

what  is the appropriate action for the battery [30]. 

Proposed Method And Approaches 
In this research article, sequential decisioking under 

uncertainties is proposed. In a 24-hour day at every time step (1 

hour,15 minutes), stocbehaviorviourof the environment is 

explored through Reinforcement learning which is done by 

adopting two different approaches for training the data for a 

whole year.  

In 1st approach, the decision has been made to direct the 

battery of the microgrid to execute the optimal actions after 

certain training. This will be done on a daily basis.The training 

is done on forecasted PV and load profiles. The optimal 

actionsderived are drivethe d from tforecastedf forcasted data are 

then used to commad the battery actions, charge, discharge or 

remain idle for the current year or real data (PV and load) 

profiles of the year.  At the end of the current year it wil,l show 

the overall yearly cost of the microgrid which is connected to the 

utility grid. Or daily cost can also be monitored or checked by 

this approach. The 2nd approach based on an online  training 

mechanism is used to optimise the grid tied microgrid. The 

training and getting optimal actions simultaneously on a daily 

basis is the idea behind this approach.there is no need of 

forcasted one year profile for this 2nd approach because it is 

implemented on current year. Unlike approach 1  there will be 

no separate training before dispatching the actions of the battery. 

The training and dispatching of control actions are done 

simalteanoulsy at real time. At day 0 the Q table is intialised with 

state vs actions of the battery (charge, discharge, idle)by getting 

instant reward. This can be done by usinga  learning rate 

(gamma) equal to zero. Now as day 1 starts, Q table updated it 

values (actions) vs each state by moving from the 1st hour to 24th 

hour of the day.The update of Q table does not require intensive 

training. However, due to instant reward by moving from 1st 

state to another state it sends the actions command of the battery 

on run time. It is very important to know that the 

differehyperparametersers which are used in Q learning are 

incorporated during this adopted approach. The only difference 

is that it does not comprises of too many rounds as done in 

previous 1st approach. For example the actions drived from 1st 

round are considered to be optimal for that particular 1st day 

while hyperparameters slightly change itself to show learning. 

Although this learning is very minor due to only one round or 

episode but due to time considerations in real time this slight 

learning is enough for 1st day of the year.The hyperparameter’s 

slight changes on the 1st day reflects to the 2nd day. The 2nd day 

follows the same procedure as done on 1st day. It also send the 

control actions to the battery at real time.  As, the days progress 

the hyperparameteres of RL which are responsible for the 

learning will change more and more until saturation of training 

happensed.At this time the Q table converges the to give best 

optimal actions for the battery. These best optimal actions of the 

battery will be achieved after approximately 50-60 days 

depending upon the different conditions of the Q learning 

algorithm such as the sampling period of the time. 

The difference between 1st and 2nd approach used in this work 

is that in 1st approach due to intensive training the dispatch of 

control actions of the battery cannot be send online or run time 

of the microgrid due to time consumed for training. But the 2nd 

approach due to only one round of training  per day the control 

actions per hour need very less time to execute at real time.The 

1st approach can give optimal actions or save cost from day 1 of 

the year depending upon the forecasted PV and load profiles. But 

the suggested 2nd approach start giving optimal actions after one 

month or more.So, the 2nd approach is more useful when the cost 

is saved on annual basis. But to use 1st approach as it is, in  online 

system is quite difficult due to time constraints. Also 1st 

approach requires very efficient forcasted algorithm for PV and 

Load profiles.But the work done so far in forcasted algorithm in 

previous similar researches  development does not guarantee the 

maximum efficiency. 

So, It is proposed as a 1st approach in this work that if forecasted 

profiles of load, and PV are very close to real profiles then 

training on a daily basis is appropriate. This is because the policy 

made by using forecasted data can exactly or approximately 

relate to real-timetime data. 

Methodology/Formal Frame Work 
The difference between load and PV profile are abbreviated as 

D (Net demand). The D can either be D>0 or D<0. Before taking 

action of the battery, the above two cases can be observed. In 

other words, for every action, there will be two scenarios either 

load<PV or  load>PV. So for every action of the battery 

charging, discharging and idle, there will be chances of two 

scenarios each. Therefore total possibilities become six. The 

details of actions are in below section. 

Declare all the states of the system, actions of the battery, 

Transition probability, Reward and Cost function’s described 

briefly in below section. The hyper parameters are one of the 

important constraints in RL. These are mainly the discount 

factor, Exploration vs Exploitation ( 𝜀  greedy factor) and 

Learning rate. All constraints for both approaches (training on 1 

year forecasted data per day and real time training and 

optimization for 1 year) used in this work have same features 

because states are repeated from one day to another till  365 or 

366th day of the year depending on regular year or leap year 

respectively. While others terms such as actions, reward function 

are also the same. The only difference is regarding their 

interpretation in both approaches as if training is done on 

forecasted one-year data.1st approach is trained on a daily basis 

and stores optimal actions which will be followed by real data. 

On the other hand, the 2nd approach real time data on a daily 

basis is not trained as many iterations like the 1st approach, it will 

train as the day’s progresses.  
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1) System States
In reinforcement learning, it is a very crucial part to define states

of the system. As states decide the maximum horizon of the

model. Also, careful declaration of states makes the model close

to practical. Two types of problems can be dealt with RL

methodology, finite horizon or infinite horizon. This work

consists of a finite time horizon. We are interested in getting the

optimal solution to our problem in a complete day.  Day is

divided into 24 hours and further it is divided among one hour

or 15 minutes time interval. So, there are 24 or 96 states for time

respectively.

Equation 2 shows  the states of the battery which represent the 

capacity of the storage system. Here, we considered three states 

of the battery capacity. 

The generalized equation of system states is: 

𝐒𝐭 × 𝐒𝐒𝐄
where 𝐒𝐭 is the time feature of the state which is divided into

24 or 96  intervals as one day has24 hours. 𝐒𝐒𝐄,  represents the

states of the storage energy in the battery. This is the transition 

probability of the system. 

Total No. of states are𝑆 =  24 × 3 = 72 (if sampling time is 

per hour) 

Or 

Total No. of states are𝑆 =  96 × 3 = 72 (if sampling time is 15 

minutes) 

2) Transition Probability
The transition probability of the Energy storage system from

state, s to state, st+1 when action at is taken can be represented

by three states equations, as referenced in [29]

{

𝑆𝐸𝑚𝑖𝑛 ≤ 𝑆𝐸 < 𝑆𝐸𝑚𝑖𝑛 +
1

3
𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦

𝑆𝐸𝑚𝑖𝑛 +
1

3
𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 ≤ 𝑆𝐸 < 𝑆𝐸𝑚𝑖𝑛 +

2

3
𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦

𝑆𝐸𝑚𝑖𝑛 +
2

3
 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 ≤  𝑆𝐸 ≤  𝑆𝐸𝑚𝑎𝑥

 

(2) 

Where: 

 Capacity= 𝑆𝐸𝑚𝑎𝑥 −  𝑆𝐸𝑚𝑖𝑛 

At, every time interval t there can be possibility of one SE level 

out of above 3. 

3) Actions
Depending on the actual state out of 72 states, the system

chooses between the actions.

A= [1, 2.3], represents the list of actions.

a3=Charging of battery; a2=Idle; battery; a1=Battery

discharging.

In section (Methodology/Formal framework) the difference

between load and PV were abbreviated as D and for random

every action there are two possibilities for having next state

(battery) as St+1 and Power utilization from the grid as Pgrid.

Hence, the difference between load and PV makes two cases.

Every case has below mentioned equations for SE (t+1) and

Pgrid.

Scenerio 1. (D<0) 

A=3 solar generation exceeds the load, the excess is used to 

charge the battery and then the rest is injected into the grid. 

A=1 solar generation exceeds the load, all the excess is injected 

to the grid + the battery?is discharged into the grid. 

A =2  solar generation exceeds the load, the excess is injected 

into the grid 

{

𝑎 = 3 (𝐶ℎ𝑎𝑟𝑔𝑖𝑛𝑔)

𝑆𝐸(𝑛𝑒𝑥𝑡) = min(𝑆𝐸(𝑡) + min(𝑏, −𝐷(𝑡)) , 𝐶𝑚𝑎𝑥)

𝑃𝑔𝑟𝑖𝑑(𝑡) = (−𝐷(𝑡) − min (min(𝑏, −𝐷(𝑡)) , 𝐶𝑚𝑎𝑥 − 𝑆𝐸(𝑡)))

𝑎 = 1 (𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔)

𝑆𝐸(𝑛𝑒𝑥𝑡) = 𝑆𝐸(𝑡) − min(𝑏, 𝑆𝐸(𝑡) − 𝐶𝑚𝑖𝑛)

𝑃𝑔𝑟𝑖𝑑(𝑡) = (−𝐷(𝑡) + min(𝑏, 𝑆𝐸(𝑡) − 𝐶𝑚𝑖𝑛))

𝑎 = 2 (𝐼𝑑𝑙𝑒)

𝑆𝐸(𝑛𝑒𝑥𝑡) =  𝑆𝐸(𝑡); 

𝑃𝑔𝑟𝑖𝑑(𝑡) = (−𝐷(𝑡))

(3) 

Scenerio 2 (D>0): 

a=3 demand deficit, the utility is used to compensate the load 

and charge the battery. 

a=1 demand deficit, the battery together with the utility are 

feeding the load. 

a=2 demand deficit, the utility is compensating the deficit. 

{

𝑎 = 3 (𝐶ℎ𝑎𝑟𝑔𝑖𝑛𝑔)

𝑆𝐸(𝑛𝑒𝑥𝑡) = min(𝑆𝐸(𝑡) + 𝑏, 𝐶𝑚𝑎𝑥)

𝑃𝑔𝑟𝑖𝑑(𝑡) = (𝐷(𝑡) + min(𝑏, 𝐶𝑚𝑎𝑥 − 𝑆𝐸(𝑡)))

𝑎 = 1 (𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔)

𝑆𝐸(𝑛𝑒𝑥𝑡) = 𝑆𝐸(𝑡) − min(min(𝑏, 𝐷(𝑡)) , 𝑆𝐸(𝑡) − 𝐶𝑚𝑖𝑛)

𝑃𝑔𝑟𝑖𝑑(𝑡) = (𝐷(𝑡) − min(min(𝑏, 𝐷(𝑡)) , 𝑆𝐸(𝑡) − 𝐶𝑚𝑖𝑛))

𝑎 = 2 (𝐼𝑑𝑙𝑒)

𝑆𝐸(𝑛𝑒𝑥𝑡) =  𝑆𝐸(𝑡)

𝑃𝑔𝑟𝑖𝑑(𝑡) =  𝐷(𝑡)

   

 (4) 

4) States vs Actions
In each state out of 72, we have 1 action which means that at

every state depending upon the SE of the battery actions may

differ. As at every time step t SE of the battery is checked and

depending upon SE level (state) the actions are noted. Here are

three states of SE so at every time interval t so, there are three

sub-states of SE in which actions are taken. The actions in every

SE at time 1 may be different because of the SE different levels.

This will be updated in every round depending upon the reward

function. As the system will learn with continuous iteration and

in last iteration system converges to give action per state which

is the best or optimal.

At the end when system converges, we extract the optimal

actions (24,96) out of 72,288 respectively depending upon the

sampling period of time.

5) Reward and Cost Function
The reward is –ive of cost function (Reward=-cost. So, higher

cost make the reward lesser and vice versa. Cost function is
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described, depending upon the cases D<0 and D>0 respectively 

by below equations respectively. 

Such as: 

𝑐𝑜𝑠𝑡(𝑠, 𝑎) =  −𝑇𝑎𝑟𝑖𝑓𝑓𝑖𝑛𝑗 × 𝑃𝑔𝑟𝑖𝑑(𝑡) ; 𝐷 < 0            (5) 

𝑐𝑜𝑠𝑡(𝑠, 𝑎) =  𝑇𝑎𝑟𝑖𝑓𝑓(𝑡)     × 𝑃𝑔𝑟𝑖𝑑(𝑡);  𝐷 > 0    (6) 
(Reward (s,a)=-cost (s,a) 

where Tariffinj shows the feed in Tariff (microgrid to utility 

grid) and fixed, while Tariff(t) is the tariff decided by AC grid. 

It is variable in this work having three different values peak, 

medium and low. 
Exploration vs Exploitation Dilemma 
The exploration-exploitation dilemma is a famous tradeoff in RL 

[8]. In the reinforcement learning setting, no one gives us some 

batch of data like in supervised learning. We’re gathering data 

as we go, and the actions that we take affects the data that we 

see, and so sometimes it’s worth to take different actions to get 

new data [30]. The agent starts accumulating information about 

its environment, it has to make a tradeoff between learning more 

about its surroundings which is called Exploration and pursuing 

what seems to be the most promising strategy with the 

experience gathered so far known as exploitation [30].  

There two adopted approaches to handle Exploration VS 

Exploitation given below: 

The agent is expected to perform well without a separate 

training phase and in that case, an explicit tradeoff  between 

exploration versus exploitation appears so that the agent should 

explore only when the learning opportunities are valuable 

enough for the future as compared to what direct exploitation 

can provide[16]. But it may not be so efficient in terms of 

optimization of cost. 

The second case which is considered in this work, the agent 

follows a training policy during the first phase of interactions 

with the environment so as to accumulate training data and hence 

learn a test policy. The test policy should then be able to 

maximize a cumulative sum of rewards in a separate phase of 

interactions. The goal of the training policy is then to ensure the 

efficient exploration of the state space without constraint directly 

related to the cumulative reward objective. [3]. 

The epsilon (ε) consider in this paper is as below: 

` 

𝜺 =  
𝜺

√𝑀−𝑀𝑚𝑎𝑥
 (7) 

6) Learning Rate
The learning rate (α) is how quickly a network abandons old

beliefs to new ones. In general, to find a learning rate should low

enough that the network converges to something useful, but high

enough that it does not  have to spend years training it [17].

In this work, α is described by below function equation 8.

𝛼 =
𝛼

𝑁−𝑁𝑚𝑎𝑥
(8) 

Figure 4. Comparison of Learning Rate and Rewards 

across Episodes. 

Fig. 4 shows the learning rate decay. This change of learning rate 

happens every day during training for the 1st approach used in 

this work. While the other novel 2nd approach used in this work 

show the decay of learning rate after days progress.  

7) Discount Factor:
It is the factor, which represents the difference in future and

present rewards. RL Important Simulation Parameters used in

this work are mentioned in the below Table 1.

TABLE 1  

PARAMETERS USED IN THIS WORK 

Name Values 

Total Capacity of the battery 12000Wh 

Max charging rate of battery 2300W 

Minimum charging rate of battery 2300W 

Initial SOC of the battery 9000Wh 

Min depth of discharge 8400Wh 

Learning Rate 0.5 

Discount factor 0.9 

Epsilon 0.2 

Time step Length 1 hour 

Results 
The aim of this paper was to develop the algorithm using RL , 

which provides Cost effective optimization and handle the 

dispatch of control actions of the battery in real-time. This work 

is simulated using MATLAB 2019(a). In this regard, help is 

taken from Matlab tool box [31]. However, simulation results 

were produced through coding. 

This section provide the results of used approaches 1 and 2 

and compared both of them as well.The results show the 

convergence timing of the 2nd approach with respect to 1st 

approach. Below figure 5 represents the profiles used to 

implement this work. 
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Figure 5. Performance comparison of approaches 1 and 2, 

Illustrating convergence timing of the 2nd approach. 

Below Figure 6 shows the battery commands achieved after 

training by both approaches 1 and 2. This graph shows charging 

and discharging of battery  on positive and negative y axis 

respectively. While when battery remains idle figure 6 below 

show no bar. 

Figure 6. Battery Commands/Actions after training of 

both approaches 1&2 

The Figure 7 below shows the Commulative optimal cost per 

day for the whole year by comparing both approaches used in 

this paper.The sampling time for this graph (Fig 7) have one hour 

per day. 

Figure 7. Comparison between both approaches in terms of 

daily cost using 1 hour Sampling time period 

The 1st approach named as conventional training which is on an 

hourly basis per day shows the average optimal cost for every 

day of the year. The data used for training is assumed to be 

forecasted data. It means that the training which has been done 

by using data profiles for example  PV and load, give best 

Optimal actions of the battery. These actions are then used to 

command the battery in real time. Though the forecasted data 

may be different than real-time data but we assume that both data 

is not so much different. This assumption is to achieve a bench 

mark for the suggested 2nd approach that how much time it will 

take to converge with respect to Approach 1. Because the 

suggested approach is applied to assumed real data. However, it 

is almost impossible to get real time PV and load profiles exactly 

by using forcasting. The other pattern of the graph (non training) 

shows the optimal cost per day by using the 2nd approach which 

is by following the learning process as the day’s progress. In 2nd 

approach, it has been observed that best cost saving start 

increasing after 100 days approximately. This is because from 

day 1 to day 100 agent was learning and then start converging 

until it reaches in between 100-110 day. This is because now 

suggested approach which was learning online had updated its Q 

table with maximum commulative rewards against with each 

state vs actions.As,in the beginning the suggested approach had 

not trained so much and does not know the stochastic behavior 

of the environment completely.So, it take some days to gather 

information about the unknown environment and then betterly 

suggest the optimal actions. The sampling time of the suggested 

approach 2 is also 1 hr per day  as in approach 1 in above graph 

figure 7. 

The difference between the net average cost per year of both 

approaches is approximately 4%.The training on daily basis in 

approach 1 is more cost effective in one year analysis then the 

2nd approach. The reason is quite obvious as approach one save 

cost from the day one while the 2nd approach become efficient in 

terms of cost after 100 days approximately as shown in figure 7. 

But please noted that if the percentage age of error between 

forecasted and real data become high then the approach 1 

become less cost efficient then the proposed new algorithm 

(Approach 2). 

It is also tested in this work that if sampling time used in RL 

become shorter than the convergence time of the 2nd approach 

become less.For example as in figure 8 below the sampling time 

is 15 minutes rather than 1 hr. It means that after each 15 minutes 

of the day the RL training is performed and test both approaches 

1 and 2.The approach 2 now have more trainings in a day which 

can lead shortening of its convergence time.So, it will show cost 

saving earlier compared to Figure 7. 
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Figure 8. Comparison between both approaches in terms of 

daily cost using 15 Minutes Sampling time period 

Figure 8 above shows that the suggested approach start 

converging approximately between 90 to 100 days. However, a 

comparison between both approaches in above figure 8 suggests 

that approach 2 (suggested ) gives best optimal solution after 90 

days. 

It is also noticed that the convergence achieved in figure 8 is 

better in terms of cost than figure 7. Therfore, by decreasing the 

sampling period in terms of time the results bocme better. So, in 

this case the optimal average cost per year in both approaches 

are approximately same. But if the forcasted data used in 

approach 1 become more different than the real data then 

approach 2, suggested in this work perform better.  

Power Import From Main Grid 
The figure  9 below shows the power imported per day from the 

main grid. 

Figure 9. Comparison between both approaches in terms 

Power imported,daily from Main grid  

The power from the utility grid which is utilized during the 

shortfall of microgrid power especially at peak hours are shown 

in the above graph in comparison to both approaches used in this 

work. Figure 9 above shows that the total average poer imported 

from the main grid may show an increasing and decreasing trend 

after convergence for approach 2. This can be an argument that 

the Power imported from main grid should be decreased after the 

convergence of Approach 2. But the justification to show a bit 

different behavithanhen the therotical concept is due to  adopted 

model approach used in this work. It is not necessary that the 

power from main grid is imported during the shortfall of 

microgrid power. It can be imported even when the battery has 

enough power to fulfill the demand of the load. The reason is 

that the battery power may be saved for the time when main grid 

power has high tariff rate and there are not enough PV sources 

power avialble to satify the user demand.Hence, the main 

objective for this work which is to decrease or optimize the 

overall average cost of the utility grid per year by controlling the 

battery actions (charge,discharge,Idle) have been 

achieved.When used 15 minutes sampling period for time the 

total average power imported from the main grid become same 

in both approaches 1 and 2 depending the difference between 

forcasted and real data profiles.If forcasted and real data are 

more different then the total average import from the main grid 

is also decreased in approach 2 as compared with approach 1. 

Storage Energy Of The Battery 
This work takes care of all the parameters which can affect the 

efficiency of battery in terms of its life and state of charge.It is 

also suggested in this work that the battery should not charge or 

discharge at once upto a certain level. Table 1 shows all the used 

parameters for the battery in this work.Figure 10 below is the 

energy storage of the battery taken when the sampling period is 

15 minutes. 

Figure 10. Battery energy storage profile at 15 minute 

sampling period. 

Validity Of Suggested Approach 
The training approach adopted in this work named as 2nd 

approach is checked by using different data sets of PV and load 

profiles.To,observe the behavior of suggested approach 2 on 

different data we consider below function to add or subtract 

noise in load and PV profiles. 

𝐿𝑜𝑎𝑑 = 𝐿𝑜𝑎𝑑 ± 𝑐 × (𝑟𝑎𝑛𝑑(1, 𝑋) (09) 

𝑃𝑣 = 𝑃𝑣 ± 𝑐 × (𝑟𝑎𝑛𝑑(1, 𝑋) (10) 

where X is the sampling period; for example if the sampling 

time is 1hr then the X =1*24*365=8760.If sampling time is 15 

minutes then X=4*24*365=35040. 

C is the constant that is chosen to add or subtract the amount of 

noise in the data (Pv, load). 

CASE 1: 
If the load is increased or decreased while keeping the PV 

constant. The behavior of the optimal actions should be changes. 

For example if load is increased while PV remain constant the 

overall average cost per year is increased and vice versa. 
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Figure 11. Effect of Load Variation on Optimal Actions and 

Yearly Average Cost. 

The above figure 11 comapare the changings done in load profile 

with respect to orginal laod.It is validating the  results as in 

theory that increase or decrease of load can increase or decrease 

the daily cost respectively. 

CASE 2: 
The suggested approach is checked that on different PV profiles 

it is working or not. By using equation 10 different PV profiles 

are generated to see the behavior of approach 2. 

Figure 12. Evaluating approach 2 on diverse PV profiles. 

Above figure 12 suggested that increase or decrease of PV will 

decrease or increase the daily cost respectively. 

Conclusion: 
This research proposes two approaches for optimizing the 

control actions of a battery in a Microgrid. The first approach 

relies on forecasted PV and load data, requiring intensive daily 

training and potentially being less adaptable to sudden weather 

changes. In contrast, the second approach introduces an online 

training mechanism using RL, allowing real-time control actions 

and continuous learning from day one to the end of the year. This 

approach avoids the need for forecasting, making it more 

resilient to abrupt weather changes. Furthermore, the second 

approach achieves cost savings by considering the average 

performance over the entire year. Finally, the second approach 

presents a promising alternative for efficient and adaptive 

battery control in Microgrid systems. 

In future, this Aagorithm can be validated by any other 

optimal technique such as by linear programing or by solving the 

problem by other MDP techniques. Comparison of both 

solutions give more accurate idea about the validity of 

Reinforcement learning in different optimization problems. 

This technique can be tried on real system on run time. The 

Load, PV and Tariff profiles are also used accurately according 

to the region where Microgrid is installed. 
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