
Experimental Modal Analysis of Angle Signals Based on the 
Stochastic Subspace Identification Method 

IN-HO KIM1 
1 Department of Civil Engineering, Kunsan National University, Kunsan 54150, Korea 

E-mail: inho.kim@kunsan.ac.kr

Received: November 18 2021,  Accepted: January 26, 2022  Published: January 31, 2022 

Abstract 
This paper aims to verify the results of extraction of modal parameters from angle signals based on stochastic subspace 

identification (SSI). Angle signal-based mode shape can reduce the loss of node information and increase the robustness of 

curvature-based damage detection. First, system identification of the angle signal is performed prior to damage detection. In 

general, excitation of large structures is difficult, so an output-only system identification method is required for modal 

analysis of angular signals. To achieve this, the SSI method is used. Because it does not deal with non-linear problems, it is 

one of the most powerful tools for output-only system identification methods. To describe the process of system identification 

of an angular signal using the SSI method, it is assumed that the transformation matrix represents the relationship between 

the angular displacement and the normal displacement. Next, a modified block Hankel matrix composed of an angle signal 

that can be expressed as a product of a transformation matrix and a displacement sequence vector is constructed. The 

observability matrix can be estimated using singular value decomposition for the projection of the future part onto the past 

part of the modified block Hankel matrix. Finally, we use the state and observation matrices to compute the eigen-frequency 

and angular signal-based mode shapes. To verify the analytical study results, the modal characteristics estimated through 

numerical analysis and the SSI method using angular velocity measurement were compared. 
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Introduction 
Most large structures, such as bridges, nuclear power plants, 

buildings, and offshore platforms, may be exposed to 

unexpected loads during their lifetime. In particular, serious 

events such as earthquakes, overloaded traffic jams, and 

typhoons can cause deterioration of structures. In order to 

prevent catastrophic damage to large structures, vibration-

based damage detection research is receiving a lot of attention 

[1-3]. Vibration-based damage assessment can be performed 

by examining changes in the modal properties of a structure, 

such as natural frequency and modal shape. Therefore, system 

identification for estimating dynamic modal characteristics is a 

very important part in vibration-based damage detection. 

However, artificial vibration excitation or shock excitation 

is virtually impossible for large structures. Structures can be 

vibrated by ambient input sources such as traffic, wind, etc. In 

other words, system identification for large structures that use 

input and output sources is not very practical because the 

surrounding input sources are unknown. To solve this problem, 

many researchers have proposed output-only system 

identification methods. 

Felber [4] implemented a peak selection method using all 

output signals and a reference sensor node. In this approach, 

the natural frequency can be simply estimated as the peak of 

the spectrum obtained by transforming the time domain signal 

into a frequency domain signal using a discrete Fourier 

transform technique. The autoregressive moving average 

vector (ARMAV) model has also been used to identify output-

only systems [5]. The autoregressive (AR) portion of the 

output is coupled with the moving average (MA) portion of 

the white noise input. Based on the output signal, the 

prediction error approach [6] can estimate an unknown system 

matrix. 

However, this approach has drawbacks in terms of 

inaccuracy and non-linear problems. The stochastic subspace 

identification (SSI) method has been considered as one of the 

most powerful tools for identification of output-only systems 

because it does not deal with nonlinear problems. Therefore, 

the SSI approach is much faster, more accurate and more 

robust than the previous method. For this reason, the SSI 

method has been studied further in the past decades [7-10]. In 

particular, the book published by van Overschee and De Moor 

[11] marked a breakthrough in SSI. Finally, the modal

parameters estimated from the SSI method can be used for

vibration-based damage detection.

Recently, curvature-based damage detection approaches 

[12-15] have received considerable attention as one of the 

most sensitive and reliable vibration-based approaches. 

However, the existing curvature-based approach has 

limitations in damage localization because it requires double 

differentiation and curve fitting of the displacement mode 

shape to calculate the mode shape curvature. On the other 

hand, if the angle signal-based mode shape used is extracted 

from the angle signal, the curvature can be calculated simply 

by using one derivative (displacement mode shape  angle 

signal based mode shape  mode shape curvature). Through 

this process, the loss of node information can be reduced and 

the robustness according to the curvature estimation can be 

improved. In this regard, in order to obtain an angle signal-

based mode form, system identification using an angle signal 

should be performed first.  

In this study, the method of estimating the angle signal-

based mode shape using the SSI method using the angle signal 

was investigated. The purpose of this study is to verify the 

performance of the proposed method by comparing the 

angular signal-based mode shape and angular velocity 

obtained by the SSI method through computer simulations and 

experiments. Chapter 2 compares the block Hankel matrix for 

generalized acceleration, velocity, and displacement with the 

block Hankel matrix for generalized angular acceleration, 

angular velocity, and angular displacement. Next, modal 

analysis is performed from the estimated system matrix using 

the future block Hankel matrix and the past block Hankel 

matrix. Chapter 3 compares the results of the numerical 

analysis and the experimental modal analysis. Chapter 4 

concludes this task. 
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Theory 
2.1. Block Hankel matrix for generalized acceleration, velocity, 

and displacement 

A continuous-time state-space model of a dynamic system 

with respect to acceleration, velocity, and displacement can be 

expressed as 

)f(B)(zAz ttt cyycyy +=)(
, (1) 

)(zC)y( tt ycy=
, (2) 

where zy=
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, x is the displacement, and x  is the

velocity. The state matrix (Acy) and the load matrix (Bcy) are 

given by: 
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where M, K and C are the structural mass, stiffness and 

damping matrices, respectively. 

From the previous study [8], the discrete solution of y(k) 

can be obtained simply as follows: 
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. (4) 

The stochastic subspace identification begins by 

constructing the block Hankel matrix (Hy) as follows: 
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where the subscript “p” indicates the “past” and the 

subscript “f” indicates the “future”. Thus, Hyp and Hyf are the 

block Hankel matrices including the past outputs and future 

outputs, respectively. 

Block Hankel matrix for generalized angular 
acceleration, angular velocity, and angular 
displacement 

Similar to equations (1) and (2), the continuous time state 

space model related to angular acceleration, angular velocity, 

and angular displacement can be expressed as follows: 

)f(B)(zAz ttt cc  +=)(
, (6) 

)(zC)θ( tt c =
, (7) 

where z =












 ,  is the angular displacement, and 

is the angular velocity. 

Assume that a linear transformation between the angular 

displacement (θ) and the displacement (y) exists as follows 

[16]: 

Tyθ =
, (8) 

where T is the transformation matrix. 

Thus, the block Hankel matrix (Hθ) for generalized angular 

acceleration, angular velocity, and angular displacement can 

be expressed as follows: 
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Finally, the upper half and lower half of the block Hankel 

matrix (Hθ) can be obtained as follows: 
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where Hθp and Hθf are the upper half and lower half of the 

block Hankel matrix  including the past outputs and future 

outputs, respectively. 

Projection 
Van Overchee and De Moor [11] introduced a projection 

technique as a geometrical tool. However, for stochastic 

responses, projection is defined as a conditional mean (Oy), as 

follows [8]: 

ypypypypyfypypy H)H(HHH)H|(HO
1E −==

(11) 

From equation (4), the matrix Oy can be expressed as 

follows [8]: 

)z(PO 0yy =
,   (12) 

where Py is the observability matrix, which is given by: 
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The projection (Oθ) of the future block Hankel matrix (Hθf) 

onto the past block Hankel matrix (Hθf) can be defined as 

follows: 

.  (14) 

Using equations (12), (13), and (14), the projection (Oθ) can 

be reconstructed as follows: 
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The state matrix can be calculated from the estimate of the 

reconstructed observability matrix (Pθ) by removing the first 

block and the bottom block, which yields the following: 

yypypypypyfpp O\]T[\H\]T[\)\]T[\HH\]T([\\]T[\HH\]T[\)H|(HO === − 1E 
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The important aspect to consider is the estimated state 

matrix (A). Although system identification is performed using 

the observability matrix (Pθ), the estimated state matrix is the 

matrix Ay, not the matrix Aθ, as described in equation (16). In 

contrast, the observation matrix C can be obtained as follows: 

yCT):(PC == 11 . (17) 

Modal analysis 
Finally, the modal parameters can be extracted from the 

estimated system matrix matrix (Ay) and the observation 

matrix (C). In order to achieve the eigenvalue, an analysis of 

the state matrix Ay is performed as follows: 
1−

= yiyy Ψ][ΨA 
, (18) 
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where fi is the i-th natural frequency, Φy is the displacement 

mode shape, and Φθ is the angle signal-based mode shape. 

From the modal analysis, the structural natural frequencies 

were estimated using state matrix Ay, as described in equation 

(18). Thus, the estimated natural frequencies are identical to 

the values that are obtained from the accelerations, velocities, 

and displacements. However, the angle signal-based mode 

shapes were obtained (not displacement mode shapes), as 

depicted in equation (20). 

COMPARATIVE STUDY 
To verify the analytical study results, the modal analysis 

results of the SSI method were compared using the modal 

parameters estimated from the numerical analysis and the 

dynamic response obtained through the experiment. Numerical 

simulations were performed using MATLAB. In the 

experiment, a MEMS-type gyroscope was used to measure the 

angular velocity because the gyroscope is inexpensive and has 

good performance. Specifications of the same numerical and 

experimental models are given in Table 1. The sensor location 

and structural dimensions are shown in Figure 1. 

Table 1. Structural model properties. 

Properties Value 

Damping ratio 0.01 

Mass density (kg m-3) 7850 

Poisson’s ratio 0.28 

Elasticity modulus (Gpa) 200 

Length (m) 2.04 

Width (mm) 100 

Thickness (mm) 10 

Figure 1. Sensor locations for comparative study 

Numerical simulation 
From equation (8), the relationship between the 

displacement mode shape (Ψy) and angle signal-based mode 

shape (Ψθ) is expressed as follows: 

yTΨΨ = .                               (21) 

The transformation matrix (T) for the numerical simulation 

is calculated using static condensation. Consider a system 

following the Euler-Bernoulli beam theory. Assume that the 

system can be simulated as a lumped-mass matrix. Then, its 

element stiffness matrix can be expressed as follows: 
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Then, the equation of motion can be expressed in 

partitioned-matrix form as follows [17]: 
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where Uy is the displacement vector and Uθ is the rotational 

displacement vector. From the lower partition of equation 

(23), Uy can be transformed into Uθ follows: 

  yyy TUUKKU =−= −


1

. (24) 

Thus, the displacement mode shape Ψy can be transformed 

to a angle signal-based mode shape Ψθ using the 

transformation matrix  yKK
1−− . The estimated angle 

signal-based mode shapes from the numerical simulation are 

compared with the angle signal-based mode shapes obtained 

from experiment in Section 3.2.  

Experiment 
To obtain modal characteristics such as natural frequency 

and angular signal-based mode shape, angular velocity was 

measured using five analog gyroscopes (model: LPY503AL, 

STMicroelectronics) installed in a simple beam model as 

shown in Figure 1. For comparative studies, two different 

types of excitation tests were performed: ambient excitation 

and shock excitation. Vibration measurements were performed 

for 150 s at a sampling frequency of 150 Hz. The time domain 

and frequency domain signals of angular velocity for each 

excitation test are shown in Figures 2 and 3. Table 2 presents 

the estimated natural frequencies from the three tests. A 

comparative study was conducted to verify the results of the 

analytical study (Chapter 2) by comparing the angular signal-

based mode shape obtained through numerical analysis with 

the experiment. By normalizing the maximum value of each 
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angle signal-based mode shape to one, the first two angle 

signal-based mode shapes were compared as shown in Figure 

4. The SSI method using the angular velocity obtained through

computer simulation and experiment was almost the same

.

Figure 2. Angular-velocity responses: (a) time domain (b) frequency domain (for ambient excitation) 

Figure 3. Angular-velocity responses: (a) time domain (b) frequency domain (for impact excitation) 

Figure 4. Angle signal-based mode shapes (a) the first mode (b) the second mode (for each case) 

Table 2. Estimated natural frequencies. 

Case 

Numerical 

simulation 
Ambient excitation Impact excitation 

First mode: f1 (Hz) 7.05 (100%) 7.27 (103.1%) 7.24 (102.7%) 

Second mode: f2 (Hz) 28.04 (100%) 27.14 (96.8%) 26.86 (95.8%) 

59 NUST Journal of Engineering Sciences, Vol. 14, No. 2, 2021

NUST Journal of Engineering Sciences (NJES) is licensed under a Creative Commons Attribution 4.0 International License.

IN-HO KIM

https://creativecommons.org/licenses/by/4.0/


Conclusions 
In this paper, we analytically investigated the process of 

obtaining modal parameters from angle signals using the SSI 

method. Existing curvature-based damage detection 

approaches using displacement-mode features have limitations 

in damage localization because they require the double 

derivative of the displacement-mode features to calculate the 

modal feature curvature. However, the use of angle-signal-

based modal shapes can compensate for the weakness of 

curvature-based approaches using displacement-mode shapes 

due to simple differentiation (displacement-mode shape 

angle-signal-based mode shape  mode shape curvature). To 

achieve this, system identification of the angle signal must be 

performed prior to damage detection. In this study, since it is 

virtually impossible to excite a large structure using a shaker 

or impact load, the SSI method was used as an output-only 

system identification method for modal analysis of angle 

signals. The transformation matrix was assumed to express the 

relationship between the angular displacement and the normal 

displacement. Next, a modified block Hankel matrix 

composed of an angle signal that can be expressed as a 

product between a transformation matrix and a displacement 

sequence vector was constructed. We then performed a 

projection of the future part onto the past part of the modified 

block Hankel matrix. The observability matrix was estimated 

through the singular value decomposition on the projection. 

Finally, the mode shape based on the natural frequency and 

angle signal was estimated using the state matrix and the 

observation matrix composed of the observability matrix. To 

verify the analytical study results, the modal characteristics 

estimated by the SSI method using numerical analysis and 

angular velocity measurement were compared. As a result of 

comparison, it was found that the shape of the angular signal-

based mode obtained by the SSI method using the angular 

velocity obtained through computer simulation and 

experiment is almost the same. 
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