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Abstract 
In this paper, the natural frequencies of exponential functionally graded beams are determined from two 

separate formulations, one based on an analytical approach and the other based on a numerical approach. The 

classical beam theory is carried out with various boundary conditions. The results obtained in this paper are 

presented and compared with other results in the references to verify the correctness in implementing the formula 

and writing the Matlab code. This paper can help researchers have an overview of the vibration characteristics of the 

exponential functionally graded beams. Furthermore, they can enhance their research by modifying more advanced 

materials such as beams reinforced by graphene platelets, beams' shape, etc. Last but not least, with the strong 

application of the functionally graded material in real life, it would be good if there were more data related to this 

issue. 

Keywords: Natural frequency, exponential functionally graded material, beam, classical beam theory 

Introduction 
In the last few decades, functionally graded material has 

become one of the smart materials widely used in industry. The 

concept is to make a composite material by varying the 

microstructure from one material to another with a specific 

gradient. This enables the material to have the best behavior of 

both materials. If it is for thermal or corrosive resistance or 

malleability and toughness, both material strengths may be 

used to avoid troubles related to the above issues [1-5]. Due to 

the wide application of functionally graded material, various 

studies have been conducted on this material's thermal and 

mechanical behavior as [6-21]. Among three kinds of 

structures like beam, plate and shell, the beam has always been 

the interest of researchers because of its applications. The 

displacement field based on higher-order shear deformation 

theory was implemented to study the static behavior of 

functionally graded metal-ceramic (FGM) beams under 

ambient temperature by Kadoli et al. [5]. Using the principle of 

stationary potential energy, the finite element form of static 

equilibrium equation for the FGM beam was presented in this 

study. 

Moreover, the higher-order theory was also extended to 

functionally graded beams with continuously varying material 

properties. With shear deformation taken into account, a single 

governing equation for an auxiliary function was derived from 

the basic equations of elasticity as in [6] by Li et al.. Based on 

the analytical way, some references are given to solve 

functionally graded beams by authors Zhong [7], Sankar [9], 

Khalili [10], etc. Especially, an efficient finite element model 

for vibration analysis of a non local Euler–Bernoulli beam has 

been reported by Eltaher et al. [13]. Furthermore, an analytical 

solution was developed to study the free vibration of 

exponential functionally graded beams with a single 

delamination by Li and Shu [14]. Euler–Bernoulli hypothesis, 

the 'free mode' and 'constrained mode' assumptions in 

delamination vibration were adopted in this article and so on.  

The main objective of this work is to calculate the natural 

frequencies of an exponential functionally graded beam under 

four types of boundary conditions (BCs). Furthermore, this 

paper presents two different ways to get these values related to 

analytical solution and finite element strategy based on the 

classical beam theory. Although the topic and approach of this 

paper are not new, the authors' main aim is to reaffirm the 

applicability of classical beam theory once again to analyze the 

functionally graded beams with acceptable results.  

This paper has four sections. Sect. 1 gives the 

introduction as above. Sect. 2 presents the formulations as well 

as Sect. 3 shows some actual results. Finally, a few comments 

are also given in Sect. 4, respectively.     

Formulations  
Exponential functionally graded material  

The exponential functionally graded material is one of 

three kinds of functionally graded material as follows Figure 1. 

It is assumed that the material properties continuously change 

across the thickness of the beam according to the exponential 

function.  

Fig. 1 The exponential functionally graded material. 

1

2

E1 h
ln z

h E 2

1
E(z) E e

 
+ 

 = (1) 

1

2

v1 h
ln z

h v 2

1
ν(z) ν e

 
+ 

 = (2) 

1

2

ρ1 h
ln z

h ρ 2

1
ρ(z) ρ e

 
+ 

 = (3) 

where (E1, E2), (ν1, ν2) and (ρ1, ρ2) are the material properties 

like modulus of Young, Poisson ratio, density corresponding to 

the upper and lower surfaces of the exponential functionally 

graded beam.    

Analytical approach 
Based on the classical beam theory, the displacement 

field can be written: 

o 3
1 1

u (x,t)
u (x,z,t) u (x,t) z

x


= −


(4) 

o

3 3
u (x,z,t) u (x,t)= (5) 

The strains are given: 
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The stresses can be expressed as: 
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Using the principle of least action, the equations of motion are 

obtained: 
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The harmonic solution can be shown as below: 
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Where C1, C2, C3, C4 are constants. These constants are unique 

for a given set of boundary conditions. So four boundary 

conditions can be listed here with subscripts' C', 'S' and 'F' 

referring to the clamp, supported and free condition, 

respectively. 

SS: 

2 o
o 3
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By using four equations for each case (SS, CS, CC, or CF) 

related to the above boundary conditions and (18), the natural 

frequencies can be obtained from 
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 β can take values β1, β2, … βn corresponding to the number of 

the wave associated with the nth mode.  

Finite element approach 
A different way to calculate natural frequencies is given 

by using the finite element strategy. A beam element with two 

nodes is considered. Besides, three degrees of freedom are also 

considered at each node. They are written as below 
2
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where ψi are the Lagrange shape functions, φi are the Hermite 

shape functions. Moreover, 
o

11
u and 

o

12
u are the nodal axial 

displacements, 
o

1 31
d u= ,

o

2 1
d θ= ,

o

3 32
d u= ,

o

4 2
d θ= are the 

nodal transverse displacements and rotations. Note that '1' and 

'2' refer to nodes 1 and 2 as shown in Figure 2. 
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Fig. 2 The classical beam element. 

By using the principle of virtual work, the weak forms of the 

governing equations of motion can be easily obtained. 

Substituting the expressions for the degree of freedom vector 

in the weak forms and rearranging, the finite element system of 

equations can be reached as below 

a. Input data

Geometric data and material properties

b. Calculating constitutive matrix

c. Loop over elements

Calculating strain matrix

Calculating element stiffness matrix 

Calculating element mass matrix  

d. Assembling the element stiffness and mass matrices in

the global coordinate system

e. Applying BCs

f. Solving an equation for free vibration analysis

g. Display natural frequencies.

Results 
In this section, with the first example, the first three 

normalized natural frequencies 
2ω ωL ρA/EI= for the 

free vibration of an isotropic beam subjected to different sets 

of boundary conditions using the analytical approach (AS) and 

finite element approach (FES) are examined. A beam with the 

following parameters has been considered in the analysis E = 

30e6, L = 10, ρ = 1. The present results as Table 1, Table 2 and 

Figure 3 agree with the previous work in [13] by Eltaher et al.. 

With the application of classical beam theory, reliable results 

can be obtained in both papers. 

In the next example, Table 3 shows the first three normalized 

natural frequencies 
o

ω ω/ ζ= of the exponential 

functionally graded beam with SS boundary condition and the 

value ζ of an isotropic beam.

Table 1 The first three normalized natural frequencies 

for an isotropic beam under various boundary 

conditions with L/h = 20. 

L/h Method 
1

ω
2

ω
3

ω

AS 9.9104 39.8252 89.8749 

SS FES 9.8861 39.6519 89.7079 

[13] 9.8798 39.6460 89.7046 

AS 15.4504 50.2218 105.4712 

20 CS FES 15.4375 50.1935 105.3609 

[13] 15.4368 50.1982 105.3552 

AS 24.5237 62.0483 122.4119 

CC FES 24.4158 61.9904 122.3367 

[13] 24.4022 61.9872 122.2778 

Table 2 The first three normalized natural frequencies 

for an isotropic beam under various boundary 

conditions with L/h = 100. 

L/h Method 
1

ω
2

ω
3

ω

AS 9.9006 39.6287 89.2124 

SS FES 9.8819 39.5164 88.9763 

[13] 9.8700 39.4849 88.8595 

AS 15.4325 50.1138 104.9754 

100 CS FES 15.4207 50.0762 104.3159 

[13] 15.4189 49.9738 104.2888 

AS 22.8876 62.0019 121.2442 

CC FES 22.4017 61.8916 121.0417 

[13] 22.3744 61.6847 120.9536 

Fig. 3 The comparison of the normalized natural 

frequencies of an isotropic beam 

Table 3 The first three normalized natural frequencies for 

SS exponential functionally graded beam with L/h = 10. 

E2 / E1 BCs (SS) [14] AS FES 

1
ω 9.270 9.261 9.258 

0.2 
2

ω 37.09 37.112 37.044 

3
ω 83.28 83.271 83.269 

1
ω 9.87 9.871 9.828 

1 
2

ω 39.48 39.479 39.465 

3
ω 88.83 88.830 88.828 

Finally, by changing the boundary condition from SS to CF 

and CC, the first three normalized natural frequencies are 

also determined and given in Table 4. 

The present results as Table 3 and Figure 4 for exponential 

functionally graded beam also agree with the other work in 

[14] by authors Liu and Shu.
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Table 4 The first three normalized natural frequencies for 

CF, CC exponential functionally graded beams with L/h = 

10. 

E2 / E1 BCs (CF) AS FES 

1
ω 3.17 3.13 

0.2 
2

ω 19.91 19.85 

3
ω 58.04 57.91 

1
ω 3.38 3.27 

1 
2

ω 21.87 21.79 

3
ω 60.76 60.52 

E2 / E1 BCs 

(CC) 

AS FES 

1
ω 20.917 20.643 

0.2 
2

ω 57.123 57.225 

3
ω 112.725 112.491 

1
ω 21.894 21.521 

1 
2

ω 61.621 61.479 

3
ω 120.303 120.182 

Fig. 4. The comparison of the normalized natural 

frequencies of SS exponential functionally graded beam. 

Conclusion  
In this work, the authors present two ways to calculate the 

natural frequencies of an exponential functionally graded beam 

under four different types of boundary conditions. The results 

of this paper are good, agree well with others in references. 

Although the topic and approach of the paper are not new, the 

authors' main aim is to reaffirm the applicability of classical 

beam theory once again to analyze the functionally graded 

beams with acceptable results. Furthermore, among three kinds 

of functionally graded materials, exponential material is rarely 

used for analysis, so this paper's mechanical information may 

also be helpful to designers for specific purposes. 
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