
Raazi Muhammad Khaliq-ur-Rahman Syed 1,* Muhammad B. Kadri 2
1Department of Computer Systems Engineering, Faculty of Computing and Engineering, Mohammad Ali Jinnah University, Karachi, Pakistan

2Department of Mechatronics Engineering, College of Engineering, Karachi Institute of Economics and Technology, Karachi, Pakistan.

*Corresponding author: phone: e-mail: raazi.m.syed@ieee.org;

Abstract

Advancement in communication technology has paved the way for geographically dislocating controllers from the plants

they are controlling. Establishing a secure and reliable communication is an essential component to achieve robust control

performance. Myriad network control schemes have been proposed but they are incapacitated due to a lack of reliable

software paradigm. This highlights the need of a distributed system, which provides platform for smooth communication

between a plant and its controller. In this work, we propose CASAPAC, which is a multi-threaded communication

architecture designed to ensure reliable and in-order delivery of information between different modules of a network

control system. Any control algorithm can be tested and employed over any network using CASAPAC. An adaptive fuzzy

controller and a network-based gain scheduled PI (Proportional Integral) controller have been tested on different networks

using CASAPAC. In both cases, tests were carried out on a real plant of a coupled tank system. CASAPAC was able to

handle all the communication efficiently in different scenarios and good control performance was achieved in both cases.

Keywords: Adaptive controls, Client-server systems, Communication architecture, Distributed system, Multithreading,

Network delay, Networked control systems, Plant-controller communication

1. Introduction

Notion of using software in control systems has been around

since we have had software systems. However, they had

reduced applicability due to connection constraints and

hardware limitations. This notion slowly transformed into

reality as more sophisticated hardware evolved with the

passage of time. However, software for automation systems is

still bespoke as each system is unique and automated systems

have varied characteristics and format [1-2]. Software has

been developed separately for each type of system [3].

Although each control system has specific input and output

parameters, attempts have been made to outline generalized

software architectures [4-5]. Generalized software architecture

can resolve commonly occurring issues and provide a

development platform for future automation software [6-7]

current attempts for generalized software architecture do not

target control systems distributed across network/internet.

Control algorithms have three major components named as

sensor module, actuator module and controller module.

Actuator and sensor modules are responsible for pre and post

processing of the data and communication with the plant.

Control law is implemented in controller module. More

recently, researchers have focused on distributing the control

system software over the network. In this setting, sensor and

actuator modules reside alongside the plant and communicate

with the controller module over a network [8-9].

Consequently, many researchers have focused on issues and

challenges of network control systems [10-14]. However,

these researches lack actual implementation of a networked

control system over a network/internet.

In this era of full-time connectivity and endless internet

bandwidth, it is essential to have a distributed software

architecture, which can measure performance of any control

system distributed over network/internet. In that regard,

network control systems require communication modules with

separate sequences of execution. Also, data needs to be

produced and consumed between these modules in a specific

sequence. This outlines the need of a platform, using which

control system engineers can run their control systems over

network/internet. According to our knowledge, this is the first

attempt to develop a system, which can be used to test the

performance of any controller over the network/internet.

A Multi-Threaded Communication Architecture for Networked
Control Systems

NUST Journal of Engineering Sciences, Vol. 12, No.1, 2019

NUST Publishing, © (2019), ISSN: 2070-9900

https://doi.org/10.24949/njes.v12i1.403

mailto:raazi.m.syed@ieee.org

Figure 1. Network model

In this paper, we present CASAPAC, which is a

multithreaded software architecture designed to support

control systems over any type of computer network including

the internet. CASAPAC uses the computing power of .net

platform to run each module in a separate thread. Also, it

ensures data consistency and seamless transfer of data

between modules by implementing FIFO (First-In-First-Out)

version of the classical producer-consumer problem [15].

Using CASAPAC, performance of any control system can be

tested over the network/internet.

This paper is organized as follows: Related work is

presented in section 2. In section 3, system and network model

is outlined along with the assumptions taken into

consideration while developing CASAPAC. In section 4,

CASAPAC is presented comprehensively. We tested some

existing control systems over the network using our proposed

architecture. Results of those experiments, along with the

discussion, are presented in section 5. Finally, conclusions are

drawn in section 6.

2. Related Work

When discussing related work for control system software, it

is important to mention efforts made to develop bespoke

software, which incorporated control techniques specific to a

system [3, 16]. Also, discussion about communication

architecture for control systems will be incomplete without

mentioning FASA [6]. FASA is a recent research, which

proposes software architecture for flexible, distributed

automation systems. Focus of FASA is on better usage of

system resources to increase performance of any control

system rather than providing generic platform for any control

system distributed across computer networks.

A lot of research work has been focused on the effects (such

as delays, information loss) of distributing control systems

over networks [17-22]. Also, many techniques have been

developed to mitigate network induced effects on control

systems and to reduce load of control systems on computer

networks [23-25]. However, all these researches have been

based on specific communication models and simulations

based on those models. Therefore, need for a generic platform

is still not fulfilled.

Some researchers have focused on simulating existing

controllers over networks [26]. In pursuit of a generic

architecture for networked control systems, only some

primitive efforts have been made [27]. Tools such as

TrueTime and Jitterbug [28] provide platform to analyze

performance of control systems with introduction of delays.

However, they are just MATLAB/Simulink based simulation

tools, in which delays are only simulated. On the other hand,

CASAPAC is a generic software architecture, which works on

actual delays and takes into account real computer network /

internet.

Khaliq-ur-Rahman et al. NUST Journal of Engineering Sciences, Vol. 12, No.1, 2019

NUST Publishing, © (2019), ISSN: 2070-9900

16

3. Model and Assumptions

The network model, for which this architecture was

developed, is shown in Fig. 1. The architecture consists of a

client program and a server program, which communicate

through network/internet. It is assumed that client and server

programs are reachable to each other and no network errors

exist. Also, this architecture cannot affect network induced

delay. It is important to note that apart from communication

over computer networks, there are others factors, which

contribute towards delays [29-31]. Such delays should not be

confused with network induced delays when testing

performance of a control system over a computer network or

the internet.

CASAPAC has been developed for testing any controller

over computer networks. It is assumed that the target

controller can understand the readings sensed from its plant

and produce actuating values, which can be forwarded to its

plant without further processing. CASAPAC does not process

values transferred between controller and the plant.

4. Methodology

This architecture has been developed using C# language for

any controller written in MATLAB. It ensures that the data

from plant is fed into the controller in order and the data from

controller is fed into the plant in order. Maintaining order of

data is important in preventing malfunctioning of a control

system. Also, it ensures correctness of results of any control

algorithm tested across a network. The architecture consists of

two programs, which reside across network or the internet. On

server side, user has to select the MATLAB file, in which the

subject control algorithm is written. On client side, user has to

provide emergency shutdown command for the plant and

information about the serial port and its parameters to connect

with the plant. In addition to that, IP address and port numbers

are required for communication between client and server

programs.

On server side, MATLAB instance is initialized while serial

port object is created at the client side. Apart from that,

separate threads for sending and receiving are created at both

client and server. There are three threads of execution on

server side: Receiver, Controller and Sender. On client side,

there are four threads: Sensor, Sender, Receiver and Actuator.

Communication between threads of the same program is

implemented keeping in mind producer-consumer problem

with FIFO (First-In-First-Out) ordering. In producer-consumer

problem with FIFO ordering, following issues are important: -

• A producer can't produce if producer-consumer

buffer is full. We have kept buffer size sufficiently

large, so that none of the values are missed out.

• A consumer can't consume if producer-consumer

buffer is empty.

• A value, which is produced first, should be consumed

first. This is important to ensure smooth controlling

functionality.

• Producer and consumer should not access the

producer-consumer buffer at the same time. This is

used to ensure data consistency.

There are two producer-consumer buffers at server and

client side each. These buffers hold data at different stages of

processing. On client's side, 'sensedValue' buffer holds the

values sensed from plant and 'valFromServer' holds processed

values received from controller over a network. Sensor thread

inserts sensed values into 'sensedValue' buffer while client's

Sender thread retrieves them and sends them to the server.

Client's Receiver thread inserts received values from server

into 'valFromServer' thread while Actuator thread retrieves

them and sends them to the plant. On server's side,

'valFromClient' buffer holds values received from plant and

'valAfterComputation' buffer holds processed values received

from the controller implemented in MATLAB. Server's

Receiver thread inserts values into 'valFromClient' buffer

while server's Controller thread retrieves them and sends them

as an argument to the controller function implemented in

MATLAB. Controller thread inserts processed values into

'valAfterComputation' thread while server's Sender thread

retrieves them and sends them to the client. Variable 'bufSize'

indicates the maximum number of values that can be stored in

the producer-consumer buffer. Buffer size can be configured

to any value before running simulations. Inbuilt functionality

of connection-oriented socket programming is used to ensure

ordering between the following pairs of modules: client's

Sender thread and server's Receiver thread and server's Sender

thread and client's Receiver thread.

In order to implement in order delivery in every pair of

producer-consumer modules, following variables, with

suffixes, are used for every producer-consumer buffer:

'empty', 'full', 'latest', 'earliest' and 'mutex'. Variable 'empty'

indicates the number of empty slots in a buffer, 'full' indicates

the number of filled slots in a buffer, 'latest' indicates index of

the newest value inserted into a buffer, 'earliest' indicates

index of the oldest value inserted into a buffer and 'mutex'

ensures that access to the buffer by producer and consumer are

mutually exclusive. Suffix SV (or Sensor) indicates that the

variable is used for 'sensedValue' buffer, suffix VFC indicates

that the variable is used for 'valFromClient' buffer, suffix VAC

indicates that the variable is used for 'valAfterComputation'

buffer and suffix VFS indicates that the variable is used for

'valFromServer' buffer. All of these variables are declared and

made public in main classes on both sides i.e. in class

'sensorActuatorForm' on client's side and in class

'ControllerDialog' on server's side.

In all cases, initial value of variable 'empty' is set equal to

'bufSize' and initial value of variable 'full' is set to zero, which

means that all slots in the buffers are empty and no slot in the

buffers is full in the beginning. Since the buffer is empty in the

beginning, values of 'latest' and 'earliest' are set to zero.

Starting at index zero, programs insert/retrieves values in/from

producer-consumer buffers in circular manner i.e. indexes

becomes zero whenever they become equal to 'bufSize' after

increments. Lastly, all 'mutex' variables are set to one initially

i.e. they are available. In order to access a buffer, its producer

Khaliq-ur-Rahman et al. NUST Journal of Engineering Sciences, Vol. 12, No.1, 2019

NUST Publishing, © (2019), ISSN: 2070-9900

17

or consumer module decrements its 'mutex' so that it becomes

zero i.e. not available to the other module. After accessing the

buffer 'mutex' is incremented so that it becomes one again i.e.

available. If 'mutex' is not available to a module, it waits until

it becomes available. While initializing variables at the

server's side, an instance of MATLAB is made ready so that

controller function can be invoked whenever required.

Client-server connections are established using connection-

oriented socket programming and a pair of Sender and

Receiver threads are started at both the server's side and the

client's side. We refer to the main thread of execution at

server's side as Controller thread and the main thread of

execution at client's side as Actuator thread.

On client side, a serial port is initialized and opened. Also, a

handler function is specified for receiving data from plant. As

soon as the Sensor thread senses a value from plant, it waits

for an empty slot i.e. a slot to become available in the

'sensedValue' buffer. As soon as an empty slot becomes

available, it increments 'latest' variable, decrements 'empty'

variable and waits on 'mutex' for the 'sensedValue' buffer.

After acquiring 'mutex', it inserts value into the 'sensedValue'

buffer, releases 'mutex' (increment it to one) and increments

'full' variable associated with the 'sensedValue' buffer.

In order to extract value from 'sensedValue' producer-

consumer buffer and send it to the server using

network/internet, client's Sender thread waits for a filled slot.

Once a filled slot is available, it increments 'earliest' variable,

decrements 'full' variable and waits on 'mutex' for the

'sensedValue' buffer. After acquiring 'mutex', it extracts value

from the 'sensedValue' buffer, releases 'mutex' (increment it to

one) and increments 'empty' variable associated with the

'sensedValue' buffer. The extracted value is sent to server

using sockets and the client's Sender thread waits for a filled

slot again.

As soon as the server's Receiver thread receives a value, it

inserts it into 'valFromClient' buffer using the same above

described procedure, which is used by client's Sensor thread to

insert values into 'sensedValue' buffer. Server's Controller

thread extracts values from 'valFromClient' buffer using the

same above described procedure, which is used by client's

Sender thread to extract values from 'sensedValue' buffer.

After extracting a value, server's Controller thread invokes the

target MATLAB function, passes the extracted value as a

parameter to the function, gathers result and inserts the result

into 'valAfterComputation' buffer using the same above

described procedure, which is used by client's Sensor thread to

insert values into 'sensedValue' buffer.

Results from the MATLAB function are the actuating

values that are to be sent to the plant. Server's Sender thread

extracts actuating values from 'valAfterComputation' buffer

using the same above described procedure, which is used by

client's Sender thread to extract values from 'sensedValue'

buffer. After extracting an actuating value from

'valAfterComputation' buffer, the server's Sender thread sends

it to the client using sockets and waits for the next actuating

value from the Controller thread.

Client's receiver thread always waits for actauting values

from the server. As soon as it receives a value, it inserts it into

'valFromServer' buffer using the same above described

procedure, which is used by client's Sensor thread to insert

values into 'sensedValue' buffer. Client's Actuator thread

extracts actuating values from 'valFromServer' buffer using

the same procedure, which is used by client's Sender thread to

extract values from 'sensedValue' buffer. After extraction, it

sends the value to the plant through the serial port and waits

for the next actuating value to be forwarded to the plant.

In addition to the above functionality, CASAPAC ensures

graceful shutdown of both programs in case of interruption. In

case of interruption, all threads are joined and all ports and

sockets are closed. At client's side, emergency shutdown

command is sent to the plant before closing the port.

5. Experiments and results

According to our knowledge, this is the first attempt in

developing generic software for distributing any control

systems across computer networks / internet with actual

delays. Comparison of our architecture with bespoke software

or software, which has simulated delays, cannot provide

meaningful results. Therefore, we are providing results

achieved from testing state-of-the-art controllers over

computer network / internet using CASAPAC.

Khaliq-ur-Rahman et al. NUST Journal of Engineering Sciences, Vol. 12, No.1, 2019

NUST Publishing, © (2019), ISSN: 2070-9900

18

Model Free Fuzzy

Adaptive Control
Actuator

Plant

Sensor

Controller acting as the server Network
Plant on the remote PC acting as the

client

Forward

Delay

Backward

Delay

Reference

+
- Control

Signal

Figure 2. Block diagram of the proposed control setup

h1(t)
h2(t)

h3(t)

S1 S2 S3

V1, k1 V2, k2 V3, k3

Figure 3. Block diagram of the coupled tank system

Two different controllers were successfully tested on

CASAPAC with 'bufSize' configured to '50'. The general

block diagram of the control setup is shown in Fig. 2. An

adaptive fuzzy controller (AFC) was tested in three different

scenarios i.e. over a LAN (Local Area Network), over the

internet and over a Wi-Fi network. A network based PID

controller [32] was also tested using the proposed network

control architecture. In all the cases the plant is a coupled tank

system (CTS), which is considered to be standard test

equipment for evaluating the performance of control

algorithms. The control objective was to maintain the liquid in

the middle tank at a desired level. CTS was modeled as a

single input single output (SISO) system. The inlet was in the

first tank S1 whereas the liquid drained out from the right

most tank labelled S3. There was no disturbance in the system

hence din(t) i.e. water flow rate in the middle tank was zero.

The block diagram of the CTS is given in Fig. 3.

Khaliq-ur-Rahman et al. NUST Journal of Engineering Sciences, Vol. 12, No.1, 2019

NUST Publishing, © (2019), ISSN: 2070-9900

19

Reference
Model

Proportional
Controller

Plant

Fuzzy
Identification

Algorithm

Feedforward
Controller

Measurable
Disturbances

Unmeasured
Disturbances

r(t)

e(t)

u(t) y(t)ub(t)

uf(t)

+

+

+

-

Figure 4. Block diagram of the adaptive fuzzy controller

5.1 Network based Adaptive Fuzzy Controller

The block diagram of the AFC is shown in Fig. 4. A

complete overview of the AFC can be found in the

works of Kadri et al. [33-34].

Figure 5. Control performance over local area network

Using CASAPAC, control systems can be implemented on

any type of network. Three different scenarios in which the

AFC was tested are discussed below: -

• The plant and the controller are on a local area

network with Ethernet connectivity (Fig. 5).

• The plant and the controller are connected via

internet using fixed IP (Fig. 6).

• The plant and the controller are connected using

Wi-Fi (Fig. 7).

Figure 6. Control performance over the internet

Khaliq-ur-Rahman et al. NUST Journal of Engineering Sciences, Vol. 12, No.1, 2019

NUST Publishing, © (2019), ISSN: 2070-9900

20

Figure 7. Control performance over wireless network

In all the three cases all the communication between

the plant and the controller was handled seamlessly

by CASAPAC. The control performance in all the

three cases was satisfactory. The controller and the

plant were unaware of the intermediate network

layer. Network induced delays were compensated

by the control scheme.

5.2 Network based PI Controller

As another example a network-based PI controller was also

tested with CASAPAC. In order to test the network-based PI

controller no software support was proposed by the

researchers. Network based PI was implemented using

CASAPAC. The plant is modelled as first order plus dead

time (FOPDT). The plant and controller equations are given

below: -

𝐺𝑐(𝑠) = 𝑘𝑐 [1 +
1

𝑇𝑖𝑠
] − − − −− − − − −−(1)

Gp(s) =
kp

1+Ts
e−sL − −− −(2)

The controller parameters shown in the Table are derived

based on the gain margin (GM), phase margin (PM), network

induced delay, gain of the system and time constant

specifications: -
𝜋

2
+ 𝑎𝑟𝑐𝑡𝑎𝑛𝜔𝑝𝑇𝑖 − 𝑎𝑟𝑐𝑡𝑎𝑛𝜔𝑝𝑇 −

𝜔𝑝(𝜏𝑛 + 𝐿) = 0 − − − −− − − − −− − − −− − − −− −

(3)

1

𝐴𝑚
=

𝑘𝑐𝑘𝑝

𝜔𝑝𝑇𝑖
√
1+𝜔𝑝

2𝑇𝑖
2

1+𝜔𝑝
2𝑇2

− −− − − −− − − − − (4)

1 =
𝑘𝑐𝑘𝑝

𝜔𝑔𝑇𝑖
√
1+𝜔𝑔

2𝑇𝑖
2

1+𝜔𝑔
2𝑇2

− − − − −− − − −− − (5)

𝜑𝑚 =
𝜋

2
+ 𝑎𝑟𝑐𝑡𝑎𝑛𝜔𝑔𝑇𝑖 − 𝑎𝑟𝑐𝑡𝑎𝑛𝜔𝑔𝑇 − 𝜔𝑔(𝜏𝑛 + 𝐿) − − −

− − −− − − −− − − − − (6)

Table 1: Controller parameters for the network-based PI

controller

PI1 PI2

Pre-specified Parameters

Am 3db 3db

φm 50° 50°

kp 19.981 28.065

L 5.047s 6.2s

T 73.995s 98.97s

τn 3s 3s

Computed Values of PI Controller

ωp 0.1865 0.1636

ωg 0.065 0.0568

Ti 38.7179 48.047

kc 0.2287 0.1912

Where 𝜔𝑝 is the phase crossover frequency, 𝜔𝑔 is the gain

crossover frequency, 𝐴𝑚 is the specified gain margin, 𝜑𝑚 is

the specified phase margin, 𝜏𝑛 is the total network delay, 𝐿 is

the plant dead time, 𝑇 is the plant time constant, 𝑘𝑝 is the

plant gain, 𝑇𝑐 is the integral time constant and 𝑘𝑐 is the

controller gain. Since CTS is nonlinear, it was linearized at

two different operating points. The two linearized FOPDT

models at the different operating points are given in following

equations: -

𝐺𝑝(𝑠) =
18.981

73.995𝑠+1
𝑒−5.07𝑠 − − −− − − −−(7)

𝐺𝑝(𝑠) =
28.065𝑒−6.2𝑠

98.97𝑠+1
− −− − − −− − − −(8)

A gain scheduled network-based PI controller was designed

with two different sets of gains for the two operating levels. A

comparison of the control performance for the gain scheduled

network-based PI and AFC on CASAPAC is shown in Fig. 8.

Figure 8. Comparison of control performances

6. Conclusions and future work

A software architecture (CASAPAC) has been proposed for

networked control system. The controller and the plant

Khaliq-ur-Rahman et al. NUST Journal of Engineering Sciences, Vol. 12, No.1, 2019

NUST Publishing, © (2019), ISSN: 2070-9900

21

communicate over a network and the machines can be

geographically distributed. The proposed architecture provides

an interface for the plant and the controller so that they can be

configured for any type of network connectivity e.g. LAN,

internet or Wi-Fi. The network architecture ensures that the

data can be transferred between plant and controller over

network smoothly and in order. On the client side, separate

threads are used for processing sensor information and

subsequently sending actuation signal to the plant. On the

server side, sending and receiving threads, communicates with

the main thread. Main thread invokes the MATLAB controller

function, which processes all the information and generates a

control signal to be relayed to the client. The user is

completely oblivious of the threading model.

References

1. M.B. Kadri, “Disturbance rejection in information

poor systems using model free neurofuzzy control”,

Ph.D. Thesis, University of Oxford, Oxford, United

Kingdom, 2009.

2. K.M. Vijaya, S. Sundaram, S.N. Omkar, G. Ranjan

and S. Prasad, “A direct adaptive neural command

controller design for an unstable helicopter”, Eng.

Appl. Artif. Intel, vol. 22, 2009, pp.181-191.

3. T.M. McPhillips, S.E. McPhillips, H.J. Chiu, A.E.

Cohen, A.M. Deacon, P.J. Ellis, E. Garman, A.

Gonzalez, N.K. Sauter, R.P. Phizackerley et al.,

“BluIce and the Distributed Control System: software

for data acquisition and instrument control at

macromolecular crystallography beamlines”, J.

Synchrotron Radiat., vol. 9, 2002, pp. 401-405.

4. D.L. Rogerio, G. Holger, A.M. Hausi, S. Mary, A.

Jesper, L. Marin, S. Bradley, T. Gabriel, M.V. Norha,

V. Thomas et al., “Software engineering for self-

adaptive systems: A second research roadmap”,

Proceedings of Software Engineering for Self-

Adaptive Systems II, Berlin, Heidelberg, Germany:

Springer, pp. 1-32, 2013.

5. V. Valeriy, “Software engineering in industrial

automation: State of the art review”, IEEE T. Ind.

Inform., vol. 9, 2013, pp. 1234-1249.

6. W. Michael, G. Thomas, K. Atul and O. Manuel,

“FASA: A software architecture and runtime

framework for flexible distributed automation

systems”, J. Syst. Architect., vol. 61, 2015, pp. 82-

111.

7. E. Raphael, S. Thanikesavan, M. Aurelien and L. Jun,

“Real-time network traffic handling in FASA”,

Proceedings of 10th IEEE International Symposium

on Industrial Embedded Systems (SIES), NY, USA,

pp. 1-10, June 8-10, 2015.

8. G.R. Ashok and Y.C. Mo, “Networked control

system: overview and research trends”, IEEE T. Ind.

Electron., vol. 57, 2010, pp. 2527-2535.

9. A. Panos and B. John, “Special issue on technology

of networked control systems”, P. IEEE, vol. 95,

2007, pp. 5-8.

10. Z. Lixian, G. Huijun and K. Okyay, “Network

induced constraints in networked control systems: A

survey”, IEEE T. Ind. Inform., vol. 9, 2013, pp. 403-

416.

11. Z. Hui, S. Yang and M.A. Saadat, “Robust H∞ PID

control for multivariable networked control systems

with disturbance noise attenuation”, Int. J. Robust

Nonlin., vol. 22, 2012, pp. 183-204.

12. W. Xiaofeng and M.D. Lemmon, “Event triggering in

distributed networked control systems”, IEEE T.

Automat. Contr., vol. 56, 2011, pp. 586-601.

13. M.C.F. Donkers, W.P.M.H Heemels, V.D.W. Nathan

and H. Laurentiu, “Stability analysis of networked

control systems using a switched linear systems

approach”, IEEE T. Automat. Contr., vol. 56, 2011,

pp. 2101-2115.

14. Y. Rongni, S. Peng, P.L. Guo and G. Huijun,

“Network based feedback control for systems with

mixed delays based on quantization and dropout

compensation”, Automatica, vol. 47, 2011, pp. 2805-

2809.

15. A. Silberschatz, P.B. Galvin and G. Greg, Operating

system concepts”. Ninth ed., NY, USA: Wiley, 2013.

16. J.L. Yan and T. Shaocheng, “Adaptive fuzzy control

for a class of unknown nonlinear dynamical

systems”, Fuzzy Set. Syst., vol, 263, 2015, pp. 49-70.

17. C. Seunghwan, N.S. Kiong and W. Wenqin, “Robust

H∞ fuzzy control of discrete nonlinear networked

control systems A SOS approach”, J. Frankl. Inst.,

vol. 351, 2014, pp. 4065-4083.

18. Y. Huaicheng, Y. Sheng, Z. Hao and S. Hongbo, “L2

control design of event triggered networked control

systems with quantizations”, J. Frankl. Inst., vol.

352, 2015, pp.332-345.

19. G. Yang, W. Jingcheng, Z. Langwen and L. Chuang,

“Robust H∞ control of multi systems with random

communication network accessing”, J. Frankl. Inst.,

vol. 352, 2015, pp. 1693-1721.

20. L. Lu, P. Feng and X. Dingyu, “Fractional order

optimal fuzzy control for network delay”, Optik, vol.

125, 2014, pp. 7020-7024.

21. H. Fei, F. Gang, W. Yong, Q. Jianbin and Z.

Changzhu, “A novel dropout compensation scheme

for control of networked TS fuzzy dynamic systems”,

Fuzzy Set. Syst., vol. 235, 2014, pp. 44-61.

22. Z. Changzhu, F. Gang, Q. Jianbin, A.Z. Wen, “TS

fuzzy model based piecewise H∞ output feedback

controller design for networked nonlinear systems

with medium access constraint”, Fuzzy Set. Syst., vol.

248, 2014, pp.86-105.

23. Z. Dawei, L.H. Qing and J. Xinchun, “Network-

based output tracking control for TS fuzzy systems

using an event-triggered communication scheme”,

Fuzzy Set. Syst., vol. 273, 2015, pp. 26-48.

24. W. Huijiao, S. Peng and Z. Jianhua, “Event-triggered

fuzzy filtering for a class of nonlinear networked

control systems”, Signal Process., vol. 113, 2015, pp.

159-168.

25. H. Songlin, Y. Dong, P. Chen, X. Xiangpeng and Y.

Xiuxia, “Event triggered controller design of

Khaliq-ur-Rahman et al. NUST Journal of Engineering Sciences, Vol. 12, No.1, 2019

NUST Publishing, © (2019), ISSN: 2070-9900

22

nonlinear discrete time networked control systems in

TS fuzzy model”, Appl. Soft. Comput., vol. 30, 2015,

pp. 400-411.

26. D.T. Hoang, H.G. Zhi, K.D. Xuan and M.C. Xin,

“FuSY. A normalized PID controller in networked

control systems with varying time delays”, ISA T.,

vol. 52, 2013, pp. 592-599.

27. K. Kirsanov, “The Architecture of Robotics Control

Software for Heterogeneous Mobile Robots

Network”, Proceedings of 24th International

Symposium on Intelligent Manufacturing and

Automation (DAAAM 2014), London, UK, pp. 216-

221, October 23-26, 2013.

28. C. Anton, H. Dan, L. Bo, E. Johan and E.A. Karl,

“How does control timing affect performance”, IEEE

Contr. Syst. Mag., vol. 23, 2003, pp. 16-30.

29. Z. Lai, P. Wu and D. Wu, “Application of fuzzy

adaptive control to a MIMO nonlinear time delay

pump valve system”, ISA T., vol. 57, 2015, pp. 254-

261.

30. J. Li and H. Yue, “Adaptive fuzzy tracking control

for stochastic nonlinear systems with unknown time

varying delays”, Appl. Math. and Comput., vol. 256,

2015, pp. 514-528.

31. A. Arunkumar, R. Sakthivel and K. Mathiyalagan,

“Robust reliable H∞ control for stochastic neural

networks with randomly occurring delays”,

Neurocomputing, vol. 149, 2015, pp. 1524-1534.

32. H. Tran, Z. Guan, X. Dang, X. Cheng and F. Yuan,

“A normalized PID controller in networked control

systems with varying time delays”, ISA T., vol. 52,

2013, pp. 592-599.

33. M.B. Kadri and A.L. Dexter, “Disturbance rejection

using fuzzy model free adaptive control FMFAC with

adaptive conditional defuzzification threshold”, Int.

J. Uncertain. Fuzz., vol. 22, 2014, pp. 243-261.

34. M.B. Kadri, “Fuzzy relational control of uncertain

systems”, J. Frankl. Inst., vol. 351, 2014, pp. 3013-

3031.

Khaliq-ur-Rahman et al. NUST Journal of Engineering Sciences, Vol. 12, No.1, 2019

NUST Publishing, © (2019), ISSN: 2070-9900

23

	3. 403-1013-1-SM

