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Abstract 

Advancement in communication technology has paved the way for geographically dislocating controllers from the plants 

they are controlling. Establishing a secure and reliable communication is an essential component to achieve robust control 

performance. Myriad network control schemes have been proposed but they are incapacitated due to a lack of reliable 

software paradigm. This highlights the need of a distributed system, which provides platform for smooth communication 

between a plant and its controller. In this work, we propose CASAPAC, which is a multi-threaded communication 

architecture designed to ensure reliable and in-order delivery of information between different modules of a network 

control system. Any control algorithm can be tested and employed over any network using CASAPAC. An adaptive fuzzy 

controller and a network-based gain scheduled PI (Proportional Integral) controller have been tested on different networks 

using CASAPAC. In both cases, tests were carried out on a real plant of a coupled tank system. CASAPAC was able to 

handle all the communication efficiently in different scenarios and good control performance was achieved in both cases. 

Keywords: Adaptive controls, Client-server systems, Communication architecture, Distributed system, Multithreading, 

Network delay, Networked control systems, Plant-controller communication 

1. Introduction

Notion of using software in control systems has been around 

since we have had software systems. However, they had 

reduced applicability due to connection constraints and 

hardware limitations. This notion slowly transformed into 

reality as more sophisticated hardware evolved with the 

passage of time. However, software for automation systems is 

still bespoke as each system is unique and automated systems 

have varied characteristics and format [1-2]. Software has 

been developed separately for each type of system [3].  

Although each control system has specific input and output 

parameters, attempts have been made to outline generalized 

software architectures [4-5]. Generalized software architecture 

can resolve commonly occurring issues and provide a 

development platform for future automation software [6-7] 

current attempts for generalized software architecture do not 

target control systems distributed across network/internet. 

Control algorithms have three major components named as 

sensor module, actuator module and controller module. 

Actuator and sensor modules are responsible for pre and post 

processing of the data and communication with the plant. 

Control law is implemented in controller module. More 

recently, researchers have focused on distributing the control 

system software over the network. In this setting, sensor and 

actuator modules reside alongside the plant and communicate 

with the controller module over a network [8-9]. 

Consequently, many researchers have focused on issues and 

challenges of network control systems [10-14]. However, 

these researches lack actual implementation of a networked 

control system over a network/internet. 

In this era of full-time connectivity and endless internet 

bandwidth, it is essential to have a distributed software 

architecture, which can measure performance of any control 

system distributed over network/internet. In that regard, 

network control systems require communication modules with 

separate sequences of execution. Also, data needs to be 

produced and consumed between these modules in a specific 

sequence. This outlines the need of a platform, using which 

control system engineers can run their control systems over 

network/internet. According to our knowledge, this is the first 

attempt to develop a system, which can be used to test the 

performance of any controller over the network/internet. 

A Multi-Threaded Communication Architecture for Networked 
Control Systems 
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Figure 1. Network model 

In this paper, we present CASAPAC, which is a 

multithreaded software architecture designed to support 

control systems over any type of computer network including 

the internet. CASAPAC uses the computing power of .net 

platform to run each module in a separate thread. Also, it 

ensures data consistency and seamless transfer of data 

between modules by implementing FIFO (First-In-First-Out) 

version of the classical producer-consumer problem [15]. 

Using CASAPAC, performance of any control system can be 

tested over the network/internet. 

This paper is organized as follows: Related work is 

presented in section 2. In section 3, system and network model 

is outlined along with the assumptions taken into 

consideration while developing CASAPAC. In section 4, 

CASAPAC is presented comprehensively. We tested some 

existing control systems over the network using our proposed 

architecture. Results of those experiments, along with the 

discussion, are presented in section 5. Finally, conclusions are 

drawn in section 6.  

2. Related Work

When discussing related work for control system software, it 

is important to mention efforts made to develop bespoke 

software, which incorporated control techniques specific to a 

system [3, 16]. Also, discussion about communication 

architecture for control systems will be incomplete without 

mentioning FASA [6]. FASA is a recent research, which 

proposes software architecture for flexible, distributed 

automation systems. Focus of FASA is on better usage of 

system resources to increase performance of any control 

system rather than providing generic platform for any control 

system distributed across computer networks. 

A lot of research work has been focused on the effects (such 

as delays, information loss) of distributing control systems 

over networks [17-22]. Also, many techniques have been 

developed to mitigate network induced effects on control 

systems and to reduce load of control systems on computer 

networks [23-25]. However, all these researches have been 

based on specific communication models and simulations 

based on those models. Therefore, need for a generic platform 

is still not fulfilled. 

Some researchers have focused on simulating existing 

controllers over networks [26]. In pursuit of a generic 

architecture for networked control systems, only some 

primitive efforts have been made [27]. Tools such as 

TrueTime and Jitterbug [28] provide platform to analyze 

performance of control systems with introduction of delays. 

However, they are just MATLAB/Simulink based simulation 

tools, in which delays are only simulated. On the other hand, 

CASAPAC is a generic software architecture, which works on 

actual delays and takes into account real computer network / 

internet. 
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3. Model and Assumptions

The network model, for which this architecture was 

developed, is shown in Fig. 1. The architecture consists of a 

client program and a server program, which communicate 

through network/internet. It is assumed that client and server 

programs are reachable to each other and no network errors 

exist. Also, this architecture cannot affect network induced 

delay. It is important to note that apart from communication 

over computer networks, there are others factors, which 

contribute towards delays [29-31]. Such delays should not be 

confused with network induced delays when testing 

performance of a control system over a computer network or 

the internet. 

CASAPAC has been developed for testing any controller 

over computer networks. It is assumed that the target 

controller can understand the readings sensed from its plant 

and produce actuating values, which can be forwarded to its 

plant without further processing. CASAPAC does not process 

values transferred between controller and the plant. 

4. Methodology

This architecture has been developed using C# language for 

any controller written in MATLAB. It ensures that the data 

from plant is fed into the controller in order and the data from 

controller is fed into the plant in order. Maintaining order of 

data is important in preventing malfunctioning of a control 

system. Also, it ensures correctness of results of any control 

algorithm tested across a network. The architecture consists of 

two programs, which reside across network or the internet. On 

server side, user has to select the MATLAB file, in which the 

subject control algorithm is written. On client side, user has to 

provide emergency shutdown command for the plant and 

information about the serial port and its parameters to connect 

with the plant. In addition to that, IP address and port numbers 

are required for communication between client and server 

programs. 

On server side, MATLAB instance is initialized while serial 

port object is created at the client side. Apart from that, 

separate threads for sending and receiving are created at both 

client and server. There are three threads of execution on 

server side: Receiver, Controller and Sender. On client side, 

there are four threads: Sensor, Sender, Receiver and Actuator. 

Communication between threads of the same program is 

implemented keeping in mind producer-consumer problem 

with FIFO (First-In-First-Out) ordering. In producer-consumer 

problem with FIFO ordering, following issues are important: - 

• A producer can't produce if producer-consumer

buffer is full. We have kept buffer size sufficiently

large, so that none of the values are missed out.

• A consumer can't consume if producer-consumer

buffer is empty.

• A value, which is produced first, should be consumed

first. This is important to ensure smooth controlling

functionality.

• Producer and consumer should not access the

producer-consumer buffer at the same time. This is

used to ensure data consistency.

There are two producer-consumer buffers at server and 

client side each. These buffers hold data at different stages of 

processing. On client's side, 'sensedValue' buffer holds the 

values sensed from plant and 'valFromServer' holds processed 

values received from controller over a network. Sensor thread 

inserts sensed values into 'sensedValue' buffer while client's 

Sender thread retrieves them and sends them to the server. 

Client's Receiver thread inserts received values from server 

into 'valFromServer' thread while Actuator thread retrieves 

them and sends them to the plant. On server's side, 

'valFromClient' buffer holds values received from plant and 

'valAfterComputation' buffer holds processed values received 

from the controller implemented in MATLAB. Server's 

Receiver thread inserts values into 'valFromClient' buffer 

while server's Controller thread retrieves them and sends them 

as an argument to the controller function implemented in 

MATLAB. Controller thread inserts processed values into 

'valAfterComputation' thread while server's Sender thread 

retrieves them and sends them to the client. Variable 'bufSize' 

indicates the maximum number of values that can be stored in 

the producer-consumer buffer. Buffer size can be configured 

to any value before running simulations. Inbuilt functionality 

of connection-oriented socket programming is used to ensure 

ordering between the following pairs of modules: client's 

Sender thread and server's Receiver thread and server's Sender 

thread and client's Receiver thread.  

In order to implement in order delivery in every pair of 

producer-consumer modules, following variables, with 

suffixes, are used for every producer-consumer buffer: 

'empty', 'full', 'latest', 'earliest' and 'mutex'. Variable 'empty' 

indicates the number of empty slots in a buffer, 'full' indicates 

the number of filled slots in a buffer, 'latest' indicates index of 

the newest value inserted into a buffer, 'earliest' indicates 

index of the oldest value inserted into a buffer and 'mutex' 

ensures that access to the buffer by producer and consumer are 

mutually exclusive. Suffix SV (or Sensor) indicates that the 

variable is used for 'sensedValue' buffer, suffix VFC indicates 

that the variable is used for 'valFromClient' buffer, suffix VAC 

indicates that the variable is used for 'valAfterComputation' 

buffer and suffix VFS indicates that the variable is used for 

'valFromServer' buffer. All of these variables are declared and 

made public in main classes on both sides i.e. in class 

'sensorActuatorForm' on client's side and in class 

'ControllerDialog' on server's side.  

In all cases, initial value of variable 'empty' is set equal to 

'bufSize' and initial value of variable 'full' is set to zero, which 

means that all slots in the buffers are empty and no slot in the 

buffers is full in the beginning. Since the buffer is empty in the 

beginning, values of 'latest' and 'earliest' are set to zero. 

Starting at index zero, programs insert/retrieves values in/from 

producer-consumer buffers in circular manner i.e. indexes 

becomes zero whenever they become equal to 'bufSize' after 

increments. Lastly, all 'mutex' variables are set to one initially 

i.e. they are available. In order to access a buffer, its producer
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or consumer module decrements its 'mutex' so that it becomes 

zero i.e. not available to the other module. After accessing the 

buffer 'mutex' is incremented so that it becomes one again i.e. 

available. If 'mutex' is not available to a module, it waits until 

it becomes available. While initializing variables at the 

server's side, an instance of MATLAB is made ready so that 

controller function can be invoked whenever required. 

Client-server connections are established using connection-

oriented socket programming and a pair of Sender and 

Receiver threads are started at both the server's side and the 

client's side. We refer to the main thread of execution at 

server's side as Controller thread and the main thread of 

execution at client's side as Actuator thread. 

On client side, a serial port is initialized and opened. Also, a 

handler function is specified for receiving data from plant. As 

soon as the Sensor thread senses a value from plant, it waits 

for an empty slot i.e. a slot to become available in the 

'sensedValue' buffer. As soon as an empty slot becomes 

available, it increments 'latest' variable, decrements 'empty' 

variable and waits on 'mutex' for the 'sensedValue' buffer. 

After acquiring 'mutex', it inserts value into the 'sensedValue' 

buffer, releases 'mutex' (increment it to one) and increments 

'full' variable associated with the 'sensedValue' buffer.  

In order to extract value from 'sensedValue' producer-

consumer buffer and send it to the server using 

network/internet, client's Sender thread waits for a filled slot. 

Once a filled slot is available, it increments 'earliest' variable, 

decrements 'full' variable and waits on 'mutex' for the 

'sensedValue' buffer. After acquiring 'mutex', it extracts value 

from the 'sensedValue' buffer, releases 'mutex' (increment it to 

one) and increments 'empty' variable associated with the 

'sensedValue' buffer. The extracted value is sent to server 

using sockets and the client's Sender thread waits for a filled 

slot again. 

As soon as the server's Receiver thread receives a value, it 

inserts it into 'valFromClient' buffer using the same above 

described procedure, which is used by client's Sensor thread to  

insert values into 'sensedValue' buffer. Server's Controller 

thread extracts values from 'valFromClient' buffer using the 

same above described procedure, which is used by client's 

Sender thread to extract values from 'sensedValue' buffer. 

After extracting a value, server's Controller thread invokes the 

target MATLAB function, passes the extracted value as a 

parameter to the function, gathers result and inserts the result 

into 'valAfterComputation' buffer using the same above 

described procedure, which is used by client's Sensor thread to 

insert values into 'sensedValue' buffer. 

Results from the MATLAB function are the actuating 

values that are to be sent to the plant. Server's Sender thread 

extracts actuating values from 'valAfterComputation' buffer 

using the same above described procedure, which is used by 

client's Sender thread to extract values from 'sensedValue' 

buffer. After extracting an actuating value from 

'valAfterComputation' buffer, the server's Sender thread sends 

it to the client using sockets and waits for the next actuating 

value from the Controller thread.  

Client's receiver thread always waits for actauting values 

from the server. As soon as it receives a value, it inserts it into 

'valFromServer' buffer using the same above described 

procedure, which is used by client's Sensor thread to insert 

values into 'sensedValue' buffer. Client's Actuator thread 

extracts actuating values from 'valFromServer' buffer using 

the same procedure, which is used by client's Sender thread to 

extract values from 'sensedValue' buffer. After extraction, it 

sends the value to the plant through the serial port and waits 

for the next actuating value to be forwarded to the plant. 

In addition to the above functionality, CASAPAC ensures 

graceful shutdown of both programs in case of interruption. In 

case of interruption, all threads are joined and all ports and 

sockets are closed. At client's side, emergency shutdown 

command is sent to the plant before closing the port. 

5. Experiments and results

According to our knowledge, this is the first attempt in 

developing generic software for distributing any control 

systems across computer networks / internet with actual 

delays. Comparison of our architecture with bespoke software 

or software, which has simulated delays, cannot provide 

meaningful results. Therefore, we are providing results 

achieved from testing state-of-the-art controllers over 

computer network / internet using CASAPAC. 
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Figure 2. Block diagram of the proposed control setup 
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V1, k1 V2, k2 V3, k3

Figure 3. Block diagram of the coupled tank system 

Two different controllers were successfully tested on 

CASAPAC with 'bufSize' configured to '50'. The general 

block diagram of the control setup is shown in Fig. 2. An 

adaptive fuzzy controller (AFC) was tested in three different 

scenarios i.e. over a LAN (Local Area Network), over the 

internet and over a Wi-Fi network. A network based PID 

controller [32] was also tested using the proposed network 

control architecture. In all the cases the plant is a coupled tank 

system (CTS), which is considered to be standard test 

equipment for evaluating the performance of control 

algorithms. The control objective was to maintain the liquid in 

the middle tank at a desired level. CTS was modeled as a 

single input single output (SISO) system. The inlet was in the 

first tank S1 whereas the liquid drained out from the right 

most tank labelled S3. There was no disturbance in the system 

hence din(t) i.e. water flow rate in the middle tank was zero. 

The block diagram of the CTS is given in Fig. 3. 
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Figure 4. Block diagram of the adaptive fuzzy controller 

5.1 Network based Adaptive Fuzzy Controller 

The block diagram of the AFC is shown in Fig. 4. A 

complete overview of the AFC can be found in the 

works of Kadri et al. [33-34]. 

Figure 5. Control performance over local area network 

Using CASAPAC, control systems can be implemented on 

any type of network. Three different scenarios in which the 

AFC was tested are discussed below: - 

• The plant and the controller are on a local area

network with Ethernet connectivity (Fig. 5).

• The plant and the controller are connected via

internet using fixed IP (Fig. 6). 

• The plant and the controller are connected using

Wi-Fi (Fig. 7).

Figure 6. Control performance over the internet 
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Figure 7. Control performance over wireless network 

In all the three cases all the communication between 

the plant and the controller was handled seamlessly 

by CASAPAC. The control performance in all the 

three cases was satisfactory. The controller and the 

plant were unaware of the intermediate network 

layer. Network induced delays were compensated 

by the control scheme. 

5.2 Network based PI Controller 

As another example a network-based PI controller was also 

tested with CASAPAC. In order to test the network-based PI 

controller no software support was proposed by the 

researchers. Network based PI was implemented using 

CASAPAC. The plant is modelled as first order plus dead 

time (FOPDT). The plant and controller equations are given 

below: - 

𝐺𝑐(𝑠) = 𝑘𝑐 [1 +
1

𝑇𝑖𝑠
] − − − −− − − − −−(1) 

Gp(s) =
kp

1+Ts
e−sL − −− −(2) 

The controller parameters shown in the Table are derived 

based on the gain margin (GM), phase margin (PM), network 

induced delay, gain of the system and time constant 

specifications: - 
𝜋

2
+ 𝑎𝑟𝑐𝑡𝑎𝑛𝜔𝑝𝑇𝑖 − 𝑎𝑟𝑐𝑡𝑎𝑛𝜔𝑝𝑇 −

𝜔𝑝(𝜏𝑛 + 𝐿) = 0 − − − −− − − − −− − − −− − − −− −

(3) 

1

𝐴𝑚
=

𝑘𝑐𝑘𝑝

𝜔𝑝𝑇𝑖
√
1+𝜔𝑝

2𝑇𝑖
2

1+𝜔𝑝
2𝑇2

− −− − − −− − − − − (4) 

1 =
𝑘𝑐𝑘𝑝

𝜔𝑔𝑇𝑖
√
1+𝜔𝑔

2𝑇𝑖
2

1+𝜔𝑔
2𝑇2

− − − − −− − − −− − (5) 

𝜑𝑚 =
𝜋

2
+ 𝑎𝑟𝑐𝑡𝑎𝑛𝜔𝑔𝑇𝑖 − 𝑎𝑟𝑐𝑡𝑎𝑛𝜔𝑔𝑇 − 𝜔𝑔(𝜏𝑛 + 𝐿) − − −

− − −− − − −− − − − − (6) 

Table 1: Controller parameters for the network-based PI 

controller  

PI1 PI2 

Pre-specified Parameters 

Am 3db 3db 

φm 50° 50° 

kp 19.981 28.065 

L 5.047s 6.2s 

T 73.995s 98.97s 

τn 3s 3s 

Computed Values of PI Controller 

ωp 0.1865 0.1636 

ωg 0.065 0.0568 

Ti 38.7179 48.047 

kc 0.2287 0.1912 

Where 𝜔𝑝 is the phase crossover frequency, 𝜔𝑔 is the gain

crossover frequency, 𝐴𝑚 is the specified gain margin, 𝜑𝑚 is 

the specified phase margin, 𝜏𝑛 is the total network delay, 𝐿 is

the plant dead time, 𝑇 is the plant time constant, 𝑘𝑝 is the

plant gain, 𝑇𝑐 is the integral time constant and 𝑘𝑐 is the

controller gain. Since CTS is nonlinear, it was linearized at 

two different operating points. The two linearized FOPDT 

models at the different operating points are given in following 

equations: - 

𝐺𝑝(𝑠) =
18.981

73.995𝑠+1
𝑒−5.07𝑠 − − −− − − −−(7)

𝐺𝑝(𝑠) =
28.065𝑒−6.2𝑠

98.97𝑠+1
− −− − − −− − − −(8) 

A gain scheduled network-based PI controller was designed 

with two different sets of gains for the two operating levels. A 

comparison of the control performance for the gain scheduled 

network-based PI and AFC on CASAPAC is shown in Fig. 8. 

Figure 8. Comparison of control performances 

6. Conclusions and future work

A software architecture (CASAPAC) has been proposed for 

networked control system. The controller and the plant 
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communicate over a network and the machines can be 

geographically distributed. The proposed architecture provides 

an interface for the plant and the controller so that they can be 

configured for any type of network connectivity e.g. LAN, 

internet or Wi-Fi. The network architecture ensures that the 

data can be transferred between plant and controller over 

network smoothly and in order. On the client side, separate 

threads are used for processing sensor information and 

subsequently sending actuation signal to the plant. On the 

server side, sending and receiving threads, communicates with 

the main thread. Main thread invokes the MATLAB controller 

function, which processes all the information and generates a 

control signal to be relayed to the client.  The user is 

completely oblivious of the threading model. 
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