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Abstract 
The Internet of Things (IoT) has spurred the interaction of a multitude of smart physical objects with the 
existing cyber world. These connected “things” leverage heterogeneous protocols, diverse capabilities and 
complex environmental interdependencies, which have reshaped their risk profiles through introduction of 
novel threat vectors.  In this paper, we present a formal framework to model and analyze the security risks 
linked with generic IoT systems. The approach uses existing and widely-accepted Web Ontology Language 
(OWL) based ontologies, by extending them with IoT-specific concepts and populating them with IoT 
instances. Risk assessment, quantification and selection of viable mitigation techniques is carried out 
automatically with the help of rule-based constraints and queries applied over OWL knowledgebase. The 
practicality and effectiveness of the approach is verified through implementation and evaluation over 
realistic IoT systems. 
Keywords: Internet of Things, Automated risk analysis, IoT security modeling, IoT ontology, OWL, 
SWRL.

Introduction 

The Internet of Things (IoT) has given us a notion of a 
smartly connected world being driven by autonomous 
network of “things”; observing, interacting and 
implementing features with minimal human intervention. 
The concept has received a wide-acceptance, giving birth to 
promising applications in all technological domains, 
ranging from common home and personal appliances to 
sophisticated systems such as linked with e-Health, 
industrial automation and other safety-critical 
infrastructures. The number of connected devices has 
already surpassed human population and is predicted to 
reach 50-100 billion by the year 2020 [1]. The goal of the 
IoT is to “enable things to be connected anytime, anyplace, 
with anything and anyone ideally using any path/network 
and any service” [2]. Such a flexible communication model, 
coupled with the ever-expanding size, diversity and 
sophistication of IoT devices, introduces several new threat 
vectors, thus significantly changing the security risk 
profiles. Security is considered only as strong as the weakest 
link in the system.  Therefore, protection of the IoT 
infrastructures requires a thorough risk analysis of 
interlinked IoT devices for ensuring that they are properly-
configured, standard-compliant and offer adequate 
resiliency against traditional as well as IoT-specific threats. 
Manual approaches for risk assessment and management for 
large scale IoT systems are not only taxing, they are also 
prone to ill-judgements and human-errors. The situation 
calls for smart risk analysis and security planning solutions, 
which can be driven by automation and machine 
intelligence through understanding of risk semantics.
Realizing the emerging security challenges and the 
proposed solution as discussed above, in this paper, we 
present a formal ontology-based approach for automated 
risk analysis of complex IoT systems. Our research 
methodology can be broadly decomposed into two main 
steps. Initially, the security capabilities and operational 

dependencies of individual IoT devices are semantically 
registered in a knowledgebase, defined as a conjunction of 
two ontologies i.e. IoT ontology and security ontology. We 
have used Web Ontology Language (OWL) [3] to encode 
the semantics of the domain knowledge.  After the semantic 
registration, security soundness and risk exposure of 
registered facts is derived with the help of rule-based 
constraints and queries, developed using the built-in 
features of Semantic Web Rule Language (SWRL) [4] and 
Semantic Query-enhanced Web Rule Language (SQWRL)
[5], respectively. The inferred knowledge is also used to 
isolate high-risk devices and short-list viable security 
solutions, which can be used to mitigate the identified risks. 
The developed framework can therefore, be employed both 
at IoT design and integration stages and can assist to gauge 
as well as restraint the system-level security risks.
The proposed approach renders the following key benefits:
(a) Ontology based knowledge is hierarchical and hence
reusable.  We have developed our work by extending 
existing ontologies and our work can also be extended and 
reused in other associated domains of IoT. (b)  OWL being 
highly expressive, allows defining system knowledge with 
high complexities and constraints as compared to other 
approaches such as object oriented methods, database 
management systems and constraint satisfaction approaches 
(c) Knowledge semantics defined in OWL can be 
automatically reasoned to remove inconsistencies and infer 
new knowledge, consistent with the global model (d) OWL 
and SWRL based system models are independent of actual 
implementation.  Therefore, our approach is flexible in 
choosing implementation platforms (such as Jena, Jess, 
Prolog, etc), without the need to change the core model. 
The rest of the paper is organized as follows. In Section 2,
we present a review of related work. The contributions in 
the domain of ontology extension and alignment are 
presented in Section 3.  Section 4 discusses different 
security constraints in the form of selected rules and queries. 
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Lastly, Section 5 presents the implementation and 
evaluation, while Section 6 concludes the paper, with 
pointers to the on-going future work directions.

Literature Review  

Our work benefits from related research in ontologies for 
the IoT and security capabilities as well as the use of risk
management approaches for IoT security.  This section 
summarizes the state-of-the-art in relevant areas.
Use of Ontologies for the IoT 
Application of ontologies in the domain of IoT is an 
emerging research area. The existing literature mainly 
targets the efficiency, scalability and interoperability 
aspects of IoT, with limited focus on its security issues.
Sensor networks claim a major share of typical IoT 
systems. A few noteworthy ontologies have been proposed 
to model various aspects of connected sensors. Compton et 
al. [6] presented an OWL ontology for reasoning and 
querying about sensors and observations. Calder et al. [7]
used ontologies about sensor-packages and constraints 
defined as rules to reason on real-time sensor data and detect 
data anomalies and unexpected conditions. SSN ontology 
[8], developed by W3C Semantic Sensor Network Incubator 
Group (W3C-XG), is one of the recent and more formal 
efforts to comprehensively model sensors and their 
observations. Being generic and domain-independent, the 
SSN ontology integrates most of the concepts of earlier 
ontologies and models sensors' capabilities, deployment, 
operating restrictions and the measurement process. 
However, none of the contributions mentioned above 
addressed the security related aspects of sensor networks.
Modeling IoT Entities: Typical IoT systems constitute a 
diverse set of entities such as sensors, actuators, appliances, 
fixed and mobile controllers and tag devices.  Only a few 
efforts can be found in literature, which capture the 
knowledge of IoT entities and their interactions. IoT-Lite 
[9], a lightweight ontology, represented IoT objects, 
resources and services. This ontology is primarily focused 
on sensing, though it introduces some higher level concepts 
of actuation as well. De et al. [10] proposed a suite of three 
ontologies modeling entities, resources and services in the 
IoT domain. IoT-O ontology [11] presented an integration 
of multiple ontology modules covering the sensing, 
actuation, life-cycle, energy and service aspects of IoT. 
While their sensing module leveraged the SSN ontology, the 
actuation module was developed separately to cover the 
behavioral patterns of IoT actuators. However, none of the 
ontologies discussed above modeled the security 
vulnerabilities and risk profiles of IoT systems as a whole. 
Moreover, they are also limited in capturing the holistic 
behavior of IoT device-device and device-environment 
couplings.
Ontology-Driven IoT Security: Gyrard et al. [12] designed 
a new ontology-based security knowledge termed as 
Security Toolbox:Attack and Countermeasures (STAC) for 

satisfying the security requirements of ETSI Machine to 
Machine (M2M) architecture. STAC categorizes security 
mechanisms and attacks based on IoT communication 
mediums. The main goal of STAC is to target individual IoT 
devices (rather than integrated systems), for motivating the 
designers to embed security during the design process. 
Moreover, the published ontology version of STAC does 
not cover the IoT-specific instances of security mechanisms 
and protocols, thus limiting its reusability profile.
IoT-Specific Risk Analysis 
With the rise in IoT-specific security breach incidents, the 
field of risk assessment and management for IoT related 
threats has also emerged as a dedicated research area. Liu et 
al. [13] proposed a dynamic risk assessment methodology 
for the IoT, inspired by the artificial immune system. Their
approach computed the changing risk value of an IoT 
system based on attack intensity, as measured by different 
attack detection agents. In another work [14], researchers 
discussed the security risks being contributed by the ever-
increasing influx of IoT devices. The authors critically 
analyzed such emerging risks, their root causes and viable 
mitigation techniques. Questionnaire-driven empirical 
study is another way of quantifying the security risks. 
Chang et al. [15] utilized this approach to investigate 
enterprise risk factors for governing the risk of IoT 
environments. Jacobsson et al. [16] conducted an empirical 
and scenario-based risk analysis for smart home automation 
systems. Such empirical analyses are mostly manual and 
their findings are based on experiences and views of the 
experts. Our ontology-based approach can leverage and 
extend such manual methods to automatically reason about 
risk applicability and countermeasures, not only on 
individual IoT entities but can also deal with complex and 
large-scale IoT systems.

Modeling IoT and Security Concepts 

In this section, we discuss the contributions made during the 
ontology engineering phase by presenting the salient 
features of developed ontologies. The section begins with 
introduction to our ontology engineering approach, 
followed by a discussion on important ontology concepts. 
Ontology Engineering Approach 
Our research approach is focused on reuse of existing 
ontologies, wherever possible by extending them with IoT-
specific features such as abilities to sense, control, identify 
and impact applicable features, pertaining to both cyber and 
physical worlds. After a careful review of available options 
for IoT ontologies, we shortlisted the SSN ontology [8] as
the most suitable candidate to serve as our foundation stone. 
The SSN ontology models operational aspects of connected 
sensors and adopts a modular approach to offer reuse of 
ontology from different perspectives, including our desired 
views of data and observation, property and features of 
interest as well as broader system's perspectives.
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Fig. 1: Sub-Class View of the Aligned IoT and Security Ontologies

Additionally, SSN is already aligned with the relevant 
concepts of Dolce Ultra-Light (DUL) ontology [17], a light 
weight ontology to describe generic concepts across 
multiple domains. This further enhances coherence, 
consistency and reusability of SSN structure. However, 
SSN does not cover semantic definitions of other IoT 
devices such as actuators, controllers and identity devices. 
Moreover, it does not aim to model any security properties 
of sensors. Therefore, to support our work, we extended the 
SSN ontology in two major directions: (a) Transforming 
SSN into an IoT ontology with an aim to formally capture 
the interactions and dependencies among different IoT and 
environmental entities. (b) Alignment of SSN with a 
suitable security ontology to reason about the security 
capabilities and requirements for analyzing IoT-specific 
risks.
With regards to annotation and reasoning over security 
properties, we have extended the NRL security ontology
[18]. The reason to select NRL is its flexibility and interface 
simplicity. NRL is a collection of seven security ontologies 
each covering a unique security domain such as security 
credentials, security algorithms, security assurance and 
security concepts (includes security protocols, mechanisms 
and policies) as well as dedicated ontologies for querying 
and linking with OWL-S service ontology [19]. The 
ontologies are well-integrated through use of inter-ontology 
properties and also mention a list of security objectives 
which are met by the linked security concepts. However, 
NRL being generic in nature does not define IoT-specific 
security requirements and capabilities. Moreover, it does 
not model security risks, entity-specific vulnerabilities and 
threats.  Therefore, we extended the NRL ontology by 
adding these missing features.

The resulting IoT (extended SSN) and Security (extended 
NRL) ontologies were mutually aligned using the inter-
ontology relationships. Additionally, similar to SSN, we 
have used Dolce Ultra-Light (DUL) [18] as a parent 
ontology to explicitly define and align the novel concepts 
using a common foundation. The overall subclass view, 
depicting important concepts of the integrated ontologies, is 
given in Fig. 1.  Since DUL, SSN and NRL ontologies are 
very extensive and have been comprehensively discussed in 
the referred literature; therefore, re-introducing their 
structure is beyond the scope of this paper.  Hence, the 
figure draws only the relevant concepts of DUL, SSN and 
NRL ontologies alongside the newly added concepts and 
differentiates them with appropriate legends. The new 
concepts are prefixed as “iot:” to distinguish them from 
existing concepts. The ontological structure and design 
considerations of some of the important concepts and 
properties are discussed in the subsequent sub-sections. Few 
additional concepts and properties not discussed in this 
section are introduced in Section 4, while explaining the 
security constraints.
IoT Ontology 
Fig. 2 represents the relational view of new IoT and security 
concepts with existing concepts.  It links these concepts 
with the help of appropriate OWL properties. Both Figures
1 and 2 are to be consulted in coherence to grasp the overall 
structure of the new ontologies.  Some important extensions 
made in the SSN ontology are introduced below:
IoT Devices
Different categories of IoT devices are added as sub classes 
of ssn:Device alongside ssn:'Sensing Device' as shown in 
Fig. 2. Hence, these devices inherit the properties of 
ssn:System and dul:‘Physical object’.

NUST Journal of  Engineering Sciences44



NUST Publishing, © (2016), ISSN: 2070-9900

Fig. 2: Relational View of the Resulting Ontology (Arrows not labelled represent sub-class relationships).
Besides inheriting the properties from their super-classes, 
each device type is also defined by its unique set of 
properties.  To illustrate this further, semantic definitions of 
iot:ActuatingDevice and iot:SecurityDevice are given 
below:
ActuatingDevice: Actuators are known for their 
capabilities to impact the associated environmental 
properties of respective features of interest such as the light 
bulb changing the luminosity (property) of the living room 
(feature of interest) or the air-conditioner impacting on the 
room temperature. Thus, the iot:ActuatingDevice class is 
linked with ssn:Property through iot:impacts object 
property. As a subclass of ssn:Device and dul:‘Physical 
object’, iot:ActuatingDevice inherits their properties as 
well. Therefore, actuators can be characterized by their 
respective operating and survival ranges and they may also 
constitute other devices as sub-systems (through ssn:‘has 
subsystem’ property).
SecurityDevice: The SecurityDevice class is defined as a 
subclass of ssn:Device and an equivalent class to 
∃ 𝑠𝑠𝑛: 𝑖𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡𝑠 ∙ 𝑛𝑟𝑙: 𝑆𝑒𝑐𝑢𝑟𝑖𝑡𝑦𝑀𝑒𝑐ℎ𝑎𝑛𝑖𝑠𝑚 (i.e. any 
device implementing some security mechanism is 
categorized as a security device and all security devices 
implement some security mechanism). Different security 
devices such as Firewall, IDS and IPSec are added as sub-
classes of SecurityDevice.  Each such subclass can be 
further extended to align corresponding ontologies of the 
respective security devices, depending on the requirements.
Controller 
We define controllers as those IoT devices which can be 
used to (a) configure other devices directly or through 
authorized applications or (b) force other devices to perform 
certain actions based on the commands generated by them. 
Controllers play a crucial role in any IoT network as they 
are primarily used to exercise administrative privileges over 
devices being controlled. The Controller class is defined as 
a sub-class of dul:Role.  This role can be assigned to any 
appropriate device through iot:hasRole property. 
Controllers iot:collects the observations made by linked 
sensors and based on the collected information, control 

authorized IoT devices. Therefore, the concept is linked 
with ssn:Device through iot:controls property.  They 
normally use some iot:Application for Controlling;
therefore, Controller and Application are defined as domain 
and range, respectively, for property iot:controlsThrough.
Deployment Sector 
DeploymentSector is introduced as a sub class of 
ssn:‘deployment related process’ which links the instances 
of systems or devices with instances of sectors (e-health, 
home automation, industrial automation, smart vehicles, 
etc.) in which they are deployed. This discrimination is 
important since the same device, deployed in different 
sectors, presents varying level of security risks. For 
example, consider the risks attached with a temperature 
sensor installed for home automation and the same sensor 
installed at a nuclear plant. The types, impacts and motives 
behind the attacks on these two devices may widely differ. 
The concept ssn:System is linked with 
iot:DeploymentSector through property 
iot:hasDeploymentSector.
Security Ontology 
The IoT ontology discussed above is required to be aligned 
with some suitable security ontology to reason about the 
security capabilities and risk profiles of IoT systems. As 
justified earlier, we have used the NRL ontology for this 
purpose after enriching it with IoT-specific security 
requirements and associated concepts. Some of the worth-
mentioning enhancements made to the ontology are 
discussed here.
Vulnerability and Threat 

The NRL ontology does not cover semantic definitions of 
security vulnerabilities and threats. However, risk analysis 
of IoT systems essentially require these concepts to be 
properly defined and precisely aligned with the existing 
security concepts. Therefore, we define vulnerability and 
threat as dedicated classes inside the security main ontology 
of NRL ontology suite. Fig. 2 illustrates the key ontology 
relationships for these concepts. Vulnerability class points 
to specific weaknesses present in a given IoT device. Each 
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vulnerability pertainsTo software, firmware, hardware, 
communication protocol/link or information (data); 
categories defined as subclasses of the iot:Resource class. 
These vulnerabilities can be mitigated by implementing 
corresponding security objective(s). For example, the 
vulnerability of inadequate confidentiality and 
authentication at an IoT gateway can be countered by 
implementing the security objective of end-to-end-security
among the communicating nodes, using that gateway. Thus, 
vulnerabilities in a system can be mapped to the 
corresponding security capabilities, which can counter them
through a common security objective. Vulnerabilities are 
exploitedBy security threats such as a lack of authentication 
at actuator level can be exploited to manipulate or fabricate 
the commands directed towards it.
Security Risk 

We assess security risk as a function of threats and 
vulnerabilities contained by all the devices constituting an 
IoT system. Since the nature of risks keeps on evolving over 
time, owing to the dynamic behavior of threats, we define 
Risk as a subclass of dul:Situation. In addition to routine 
CyberSecurityRisk, IoT infrastructure is also susceptible to 
PhysicalRisk. Therefore, both these risk categories are 
introduced as sub-classes of Risk (Fig. 1). IoT related risks 
can be quantified and analyzed with reference to 
RiskLikelihood and RiskImpact, both defined as sub-classes 
of dul:Amount. Instance population of various risk 
categories and their respective scores can leverage domain 
specific risk studies. As a proof of concept, we have adopted 
the risk analysis conducted by Jacobsson et al. [16] for smart 
home automation systems. The authors in this study, 
identified a total of 32 risks and categorized them with 
reference to associated threats, vulnerabilities and severity,
based on the likelihood and impact of the exploit.
IoT Security Objectives 
The existing list of nrl:SecurityObjectives defined in the 
Security Main ontology is extended with following IoT-
specific and self-explanatory security objectives a) secure-
firmware-upgrade b) secure-bootstrap c) end-to-end-
security d) group-key-management e) host-mobility f) 
device-authentication
Adding New Instances 
Existing version of the NRL ontology is not populated with 
instances of IoT-specific security protocols. We conducted 
an extensive literature review of such security protocols and 
added some of the most widely-adopted and recommended 
protocols as instances of the appropriate NRL concepts.  
Moreover, existing NRL instances were also enriched by 
annotating them with data linked through newly added 
properties.

Rule-Based Reasoning 

This section gives an overview of the proposed 
methodology for ontology-driven risk assessment and 
management of IoT systems. The dependencies, risks and 
corresponding security requirements are derived from the 
existing OWL facts by using suitable rule and query 

languages (such as SWRL and SQWRL, respectively). 
Rule-based reasoning leverages existing or built-in OWL 
concepts and properties to offer more powerful deductive 
reasoning capabilities than OWL alone. We initially deploy 
SWRL to infer device level pairings based on their 
dependencies and matching security protocols and 
categorize these rules as inherent constraints. Followed by 
that, we demonstrate sample rules to infer risk exposure, 
quantify its severity and propose viable mitigation options.
Inherent Constraints 
These are the constraints, which derive dependency and 
security relationships among the registered IoT entities. 

Listing 1: Inherent Constraints
We established these relationships by modeling a variety of 
inherent constraints. Some examples of such constraints are 
given in Listing 1. With regards to operational 
dependencies, the related devices are linked using the 
iot:hasDependency object property. A sample constraint is 
given as Rule-1 for controller dependency. A given IoT 
device is dependent on its designated controller(s), which 
regulate its operations by issuing appropriate commands. 
Similar dependency relationships can also be established for 
other types of IoT entities, while catering for their 
interaction requirements. Inherent constraints are also used 
for pairing the devices with reference to their matching 
security properties. A sample constraint is given as Rule-2. 
This rule checks for authentication pairing at application / 
service level by utilizing nrl:ServiceSecurity ontology,
which is already aligned with OWL-S ontology. As shown 
in Rule-2, authentication pairing is defined by using

Rule-3: Mapping Vulnerabilities
𝑠𝑠𝑛:𝐷𝑒𝑣𝑖𝑐𝑒(?𝑑1) ∧ 𝑠𝑠𝑛:𝐷𝑒𝑣𝑖𝑐𝑒(?𝑑2)
∧  𝑖𝑜𝑡: ℎ𝑎𝑠𝐷𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑦(?𝑑2, ?𝑑1) 
∧ 𝑖𝑜𝑡:𝑛𝑜𝐸𝑛𝑐𝑟𝑝𝑡𝑖𝑜𝑛𝑃𝑎𝑖𝑟𝑖𝑛𝑔(?𝑑2, ?𝑑1) 
⇒ ℎ𝑎𝑠𝑉𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦(? 𝑑1, 𝑝𝑜𝑜𝑟_𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑡𝑖𝑎𝑙𝑖𝑡𝑦) ∧ 
ℎ𝑎𝑠𝑉𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦(?𝑑2, 𝑝𝑜𝑜𝑟_𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑡𝑖𝑎𝑙𝑖𝑡𝑦)  
Rule-4: Risk Exposure
𝑠𝑠𝑛:𝐷𝑒𝑣𝑖𝑐𝑒(?𝑑) ∧ 𝑖𝑜𝑡: ℎ𝑎𝑠𝑉𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦(?𝑑, 𝑣) ∧ 
𝑖𝑜𝑡: 𝑒𝑥𝑝𝑙𝑜𝑖𝑡𝑒𝑑𝐵𝑦(? 𝑣, ? 𝑡) ∧ 𝑖𝑜𝑡:𝑇ℎ𝑟𝑒𝑎𝑡(? 𝑡) ∧ 
𝑖𝑜𝑡: 𝑖𝑛𝑑𝑢𝑐𝑒𝑠(? 𝑡, ? 𝑟) ∧ 𝑖𝑜𝑡:𝑅𝑖𝑠𝑘(? 𝑟) 
⇒  𝑖𝑜𝑡: 𝑒𝑥𝑝𝑜𝑠𝑒𝑑𝑇𝑜(?𝑑, ? 𝑟)
Rule-5: Risk Scoring
𝑠𝑠𝑛:𝐷𝑒𝑣𝑖𝑐𝑒(?𝑑) ∧ 𝑖𝑜𝑡: 𝑒𝑥𝑝𝑜𝑠𝑒𝑑𝑇𝑜(? 𝑑, ? 𝑟) ∧ 𝑖𝑜𝑡: ℎ𝑎_ 
𝑠𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑(? 𝑟, ? 𝑙) ∧ 𝑑𝑢𝑙: ℎ𝑎𝑠𝐷𝑎𝑡𝑎𝑉𝑎𝑙𝑢𝑒(? 𝑙, ? 𝑙𝑣) 
∧ 𝑖𝑜𝑡: ℎ𝑎𝑠𝐼𝑚𝑝𝑎𝑐𝑡(? 𝑟, ? 𝑖) ∧ 𝑑𝑢𝑙: ℎ𝑎𝑠𝐷𝑎𝑡𝑎𝑉𝑎𝑙𝑢𝑒 
(? 𝑖, ? 𝑖𝑣) ∧ 𝑠𝑤𝑟𝑙𝑏:𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑦(?𝑅, ? 𝑙𝑣, ? 𝑖𝑣) ∧ 
𝑠𝑤𝑟𝑙𝑏:𝑔𝑟𝑒𝑎𝑡𝑒𝑟𝑇ℎ𝑎𝑛𝑂𝑟𝐸𝑞𝑢𝑎𝑙(?𝑅, 10.0) 
⇒  𝑖𝑜𝑡:𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙𝐷𝑒𝑣𝑖𝑐𝑒(?𝑑)
Rule-6: Risk Mitigation
𝑖𝑜𝑡:𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙𝐷𝑒𝑣𝑖𝑐𝑒(?𝑑) ∧ 𝑖𝑜𝑡: ℎ𝑎𝑠𝑉𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦 
(?𝑑, ? 𝑣) ∧ 𝑖𝑜𝑡:𝑚𝑖𝑡𝑖𝑔𝑎𝑡𝑒𝑑𝐵𝑦(? 𝑣, ?𝑚1) ∧ 
𝑛𝑟𝑙: 𝑆𝑒𝑐𝑢𝑟𝑖𝑡𝑦𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒(?𝑚1) ∧ 𝑛𝑟𝑙: 𝑆𝑒𝑐𝑢𝑟𝑖𝑡𝑦_ 
𝐶𝑜𝑛𝑐𝑒𝑝𝑡(? 𝑠𝑐) ∧ 𝑛𝑟𝑙: 𝑠𝑢𝑝𝑝𝑜𝑟𝑡𝑠𝑆𝑒𝑐𝑢𝑟𝑖𝑡𝑦𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 
(? 𝑠𝑐, ?𝑚2) ∧ 𝑜𝑤𝑙: 𝑆𝑎𝑚𝑒𝐴𝑠(?𝑚1, ?𝑚2) 
 ⇒ 𝑖𝑜𝑡: 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑆𝑒𝑐𝑢𝑟𝑖𝑡𝑦𝐶𝑎𝑝𝑎𝑏𝑖𝑙𝑖𝑡𝑦(?𝑑, ? 𝑠𝑐)
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nrl:securityRequirement and nrl:securityCapability 
properties, which are registered as sub-properties of OWL-
S:serviceParameter.

Listing 2: Risk-Driven Constraints
Risk-Driven Constraints 
We utilized the power of deductive reasoning to analyze 
risks for a given IoT system. This knowledge was then used 
in conjunction with inherent constraints to isolate the 
required security capabilities, which can be used to mitigate 
these risks. As mentioned earlier, we considered the domain 
of smart home automation system and leveraged the 
empirical risk analysis study conducted by Jacobsson et al. 
[16].
Listing 2 presents some of the rules supporting this 
inference process. Rule-3 proposes an automated means of 
identifying vulnerabilities, induced due to the lack of 
security inter-operability among dependent devices. The 
rule states that if a given pair of dependent devices are 
deprived of encryption pairing then they are vulnerable to 
poor_confidentiality. Since SWRL is based on open-world 
assumption, execution of Rule-3 requires the world to be 
closed using suitable axioms. Rule-4 consumes the 
vulnerability and threat information associated with 
respective devices to infer the types of risks applicable on
them. Next, Rule-5 categorizes the IoT assets with regards 
to the level of risk exposure. It isolates the devices with risk 
scores greater than or equal to 10 (in accordance with the 
categorization made by [16]), as members of 
iot:CriticalDevice. Finally, Rule-6 recommends the list of 
those security capabilities, which can be used to mitigate the 
vulnerabilities inducing that risk. These capabilities are 
linked with the device under risk using 
candidateSecurityCapability property.
Querying the Inferred Knowledge 
After reasoning over the registered IoT data using OWL 
restrictions and rule-based constraints, information 
regarding the desired set of security capabilities can be 
inferred. This information can further be scrutinized 
through customized queries. For instance, queries can be 
used to isolate those dependent devices, which cannot 
communicate using an inter-operable security protocol or do 
not meet the desired security objectives.
Similarly for risk mitigation, only those capabilities can be 
selected, which are also supported by the dependent 
devices, as demonstrated by the query given in Listing 3.

The query generates two sets, S1 for capabilities required by 
each critical device for risk mitigation and S2 for 
capabilities supported by its respective dependent devices. 
It then enlists the common capabilities by using the 
sqwrl:intersection built-in set operator.

Implementation and Evaluation 

We have used Protégé software [20] to build and extend our 
ontology. Protégé is a W3C standard-compliant, free and 
open-source ontology-editor tool developed and maintained 
by Stanford University. Ontology inference and consistency 
checking was performed by utilizing the Pellet-engine, 
which is an OWL2, java-based, open source reasoner and 
comes pre-configured with Protégé. Pellet can not only be 
used to perform traditional reasoning tasks such as 
classification, debugging and querying with soundness and 
completeness, it additionally allows the use of SWRL and 
SQWRL built-ins in the rules, facilitates incremental 
classification and also supports reasoning through Jena in 
addition to OWL API interface.

Listing 3: Report Matching Security Capabilities
For IoT systems, we conducted an extensive survey of the 
real-world IoT devices and their capabilities, mainly 
targeting the domains of home automation and building 
management systems. Risk profiles for these devices were 
built by leveraging the risk categories and corresponding 
likelihood values of our reference study [16]. However, 
values for risk impact were intuitively assigned, while 
catering for the device operational goals and capabilities. 
For example, impact of a security breach on a smart door 
lock or a smoke sensor will be considerably large as 
compared to a smart light, since the former can threaten the 
physical security and safety of the premises respectively. 
Contrary to that, for a given risk, the referred study
[16]assigned same impact values to the complete group of 
IoT devices. The IoT device-specific information was 
extracted from openly available resources and was 
subsequently structured using an H2 database engine (a Java 
SQL RDBMS). Information from the database was mapped 
and populated as ontology instances using the ontopPro [21] 
data import plugin. OntopPro is a DB-ontology mapping 
editor plugin for Protégé, which offers a powerful and 
intuitive mapping language to generate RDF triples (ABox 
assertions) for the targeted ontology. Additionally, it also 
supports querying the database on the fly without the need 
to import it in the ontology.

𝑖𝑜𝑡:𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙𝐷𝑒𝑣𝑖𝑐𝑒(? 𝑐) ∧  𝑠𝑠𝑛:𝐷𝑒𝑣𝑖𝑐𝑒(?𝑑)
∧ 𝑖𝑜𝑡:ℎ𝑎𝑠𝐷𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑒𝑦(? 𝑐, ?𝑑)
∧ 𝑖𝑜𝑡: 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑆𝑒𝑢𝑟𝑖𝑡𝑦𝐶𝑎𝑝𝑎𝑏𝑖𝑙𝑖𝑡𝑦(? 𝑐, ? 𝑠𝑒𝑐1)
∧ 𝑛𝑟𝑙: ℎ𝑎𝑠𝑆𝑒𝑢𝑟𝑖𝑡𝑦𝐶𝑎𝑝𝑎𝑏𝑖𝑙𝑖𝑡𝑦(?𝑑, ? 𝑠𝑒𝑐2)
∘ 𝑠𝑞𝑤𝑟𝑙:𝑚𝑎𝑘𝑒𝑆𝑒𝑡(? 𝑆1, ? 𝑠𝑒𝑐1)
∧ 𝑠𝑞𝑤𝑟𝑙:𝑔𝑟𝑜𝑢𝑝𝐵𝑦 
(? 𝑆1, ? 𝑐) ∧ 𝑠𝑞𝑤𝑟𝑙:𝑚𝑎𝑘𝑒𝑆𝑒𝑡(? 𝑆2, ? 𝑠𝑒𝑐2)
∧ 𝑠𝑞𝑤𝑟𝑙:𝑔𝑟𝑜𝑢𝑝𝐵𝑦(? 𝑆2, ?𝑑)
∧ 𝑠𝑞𝑤𝑟𝑙: 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛(? 𝑆3, ? 𝑆1, ? 𝑆2)
⇒ 𝑠𝑞𝑤𝑟𝑙: 𝑠𝑒𝑙𝑒𝑐𝑡(? 𝑐, ?𝑑, ? 𝑆3)

Rule-1: Controller Dependency
𝑠𝑠𝑛:𝐷𝑒𝑣𝑖𝑐𝑒(?𝑑1) ∧  𝑖𝑜𝑡: ℎ𝑎𝑠𝑅𝑜𝑙𝑒(?𝑑1, ? 𝑐) ∧
𝑖𝑜𝑡:𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟(? 𝑐) ∧ 𝑖𝑜𝑡: 𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠(? 𝑐, ? 𝑑2) ∧
𝑠𝑠𝑛:𝐷𝑒𝑣𝑖𝑐𝑒(?𝑑2) ⇒ 𝑖𝑜𝑡: ℎ𝑎𝑠𝐷𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑦(?𝑑2, ?𝑑1)  
Rule-2: Authentication Pairing
𝑠𝑠𝑛:𝐷𝑒𝑣𝑖𝑐𝑒(?𝑑1)
∧  𝑖𝑜𝑡: ℎ𝑜𝑠𝑡𝑠𝐴𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛(?𝑑1, ? 𝑎1)
∧ 𝑛𝑟𝑙: 𝑆𝑒𝑐𝑢𝑟𝑖𝑡𝑦𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡(? 𝑎1, ? 𝑟1)
∧ 𝑛𝑟𝑙:𝐴𝑢𝑡ℎ𝑒𝑛𝑡𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚(? 𝑟1)
∧ 𝑠𝑠𝑛:𝐷𝑒𝑣𝑖𝑐𝑒(?𝑑2)
∧ 𝑖𝑜𝑡: ℎ𝑜𝑠𝑡𝑠𝐴𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛(? 𝑑2, ? 𝑎2)
∧ 𝑛𝑟𝑙: 𝑆𝑒𝑐𝑢𝑟𝑖𝑡𝑦𝐶𝑎𝑝𝑎𝑏𝑖𝑙𝑖𝑡𝑦(? 𝑎2, ? 𝑐1)
∧ 𝑜𝑤𝑙:𝑆𝑎𝑚𝑒𝐴𝑠(? 𝑟1, ? 𝑐1)
⇒ 𝑖𝑜𝑡: ℎ𝑎𝑠𝐴𝑢𝑡ℎ𝑃𝑎𝑖𝑟𝑖𝑛𝑔(?𝑑2, ?𝑑1)
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Fig. 3: (a) Impact of network size on constraint verification time (b) Impact of network size on memory 
requirements (c) Impact of network size on CPU load.

We developed a number of SWRL/SQWRL constraints 
such as for mapping IoT dependencies, aligning their 
security properties, identifying and quantifying associated 
risks and mapping applicable security controls for critical 
devices. OWL restrictions and SWRL constraints were 
processed by the reasoner to derive and update the inferred 
information.  Subsequently, SQWRL based queries were 
run to output risk reports alongside suitable 
recommendations.  We tested our system for accuracy and 
scalability as discussed below:
Accuracy: The accuracy of the system was verified 
through different ways. First of all, the correctness of the 
inferred knowledgebase was stamped by the reasoning 
engine, which ensured the soundness and completeness of 
the results through inherent features. Soundness preserves 
the accuracy by ensuring that all inferences based upon facts 
are valid with reference to the semantics. Conversely, 
completeness ensures that knowledge that is actually true 
can be correctly and completely inferred by the system. We 
also verified the accuracy with the help of a ground truth 
scenario based on a small-scale home-automation system. 
Different security constraints were tested by firing the 
SWRL based rules on the registered IoT facts and then 
manually comparing the inferred configurations with the 
facts, thus verifying the correctness.
Scalability: With regards to scalability, we fed IoT data 
of varying size into the ontology and analyzed the time and 
space performance of verifying different constraints.  We 
utilized a corei5 machine with a 4GB RAM for the 
experiments.  The results of experiments are given in Fig. 3,
plotting time, memory and processing power consumed in 
relation with the number of registered devices.  The results 
reflected a near-linear rise in time and memory 
requirements while increasing the network size.

Conclusion 

In this paper, we presented an ontology-driven approach for 
risk analysis of IoT systems.  The methodology adopts an 
automated way of semantically registering the security and 
functional properties of IoT elements, pairs these elements 
based on their respective parameters and subsequently 
verify their correctness in relation to desirable security 
configurations, applied as constraints over the registered 
information.  We are actively working towards extending 

this work in several directions. The IoT and security 
ontologies presented in this paper are being extended to 
comprehensively model related IoT aspects such as 
behavior, operational specifications and network 
topologies. We also plan to port our ontology into Apache 
Jena [22], a free and open source Java-based framework for 
linked data applications.  Our initial experiments over Jena 
have shown much improved results in terms of scalability, 
data materialization time and reasoning efficiency.
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