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Abstract 

 
In communications theory, Nakagami distribution (NKD) is used to model scattered signals that 
reach a receiver from different paths. In order to use NKD to model a given set of data, we will 
have to estimate its parameters from the given data.  Method of L-Moments (MLM) is being 
compared with Method of Moments (MOM) for estimating the parameters of NKD. In this 
study, we have derived its first two L-moments in closed form and estimated its parameters using 
simulated data. This study shows that estimates based on MLM are better than MOM, not only in 
small samples but also in large samples. For evaluation purpose, we calculated Root Mean 
Square Error (RMSE) and Bias using Monte Carlo simulations. 
Keywords: mL-Moments, Method of Moments, Nakagami distribution, Parameter estimation. 

Introduction 

THIS distribution was introduced by M. Nakagami in 
1960 [1]. In communications theory, Nakagami 
distribution (NKD) is mostly used for modeling the 
fading of radio signals. It has two parameters one is 
shape parameter (m-parameter/fading parameter) and 
other is scale(w) parameter. Itis used to model 
scattered signals that reach a receiver from different 
paths. Depending on the thickness of the scatter, the 
signal will display diverse fading properties. NKD 
can be reduced to Rayleigh distribution, but gives 
more control over the extent of the fading. The NKD 
has also been applied successfully in many other 
fields as well. For example, Shankar et al. [2,3] found 
that it performs well in the making the unit 
hydrographs, which is used to estimate runoff in 
hydrology and Tsui et al. [4] applied the NKD on 
ultrasound data. Similarly, Carcolé and Sato [5] and 
Nakahara and Carcolé [6] have shown the utility of 
the NKD to deal with the formation of high-
frequency seismogram envelopes. 

In order to use NKD to model a given set of data, we 
will have to estimate its parameters from the given 
data. Shape parameter is important in the sense as its 
knowledge is required by the receiver for optimal 
reception of signals in Nakagami fading [7].In the 
literature more attention has been given in estimation 
of its shape parameter. Many of the estimators for 
shape parameter are only the approximations to MLE 
or MOM estimators [8–10]. Some alternative 
estimators have been considered and compared by 
Gaeddert and Annamalai [11], Abdi and Kaveh [12], 
and Beaulieu and Chen [13]. As we know, solution of 
the scale parameter, nw is trivial if we use MOM and 
MLE and is equal to unbiased estimator of the scale 
parameter. In our study we estimated both parameters 

of NKD through MLM and compare it with MOM 
estimators. The MLM has been extensively used by 
many researchers in variety of fields such as 
engineering, meteorology, quality control and 
Hydrology. L.Moments introduced by Hosking [14] 
show many advantages over conventional moments, 
for example, fitted sample MOM cannot explain 
complete skewness of the distribution, but fitted 
sample through MLM explain complete skewness of 
the distribution [14]. L-moments of a probability 
distribution exist only if its mean is finite. 
Asymptotic approximations to sampling distributions 
are better for L-moments than for ordinary moments. 
Although moment ratios can be arbitrarily large but 
sample moment ratios have algebraic bounds [15]. 
They are robust to outliers present in the data and 
give a better identification of the parent distribution 
for a given data sample. Due to these so many 
advantages of MLM over MOM in this study we 
drive the expressions of L-moments for NKD and 
estimated its both parameters through MLM. We 
make comparison of MLM and MOM in terms of 
RMSE and Bias for its estimated parameters. Our 
comparison is based on Monte Carlo simulations. 
 

Method of L.Moments (MLM) 

L-moments are summary statistics for probability 
distributions and data samples. They are analogous to 
conventional moments. They also provide measures 
of location, dispersion, skewness, kurtosis, and other 
aspects of the shape of probability distributions or 
data samples, but in their computation we use linear 
combinations of the ordered data values.  
Let X1,,X2 ,X3 ,……..,Xn be a random sample and 
their corresponding order statistics  are 
X1:n≤X2:n≤X3:n≤……..≤Xn:n. The rth Population L-
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moment defined by Hosking [14] is:  

 E (Xr-k: n)  

               (1) 

             (2) 

  

    (3) 

                (4)            

E (Xi: r) can be written as 

E (Xi: r) =   

Or 

 

L-moments based CV is L-CV = its range is: 

L-skewness denoted by 

 its range .L-kurtosis 

denoted by   and its range 

 

Sample L-moments as developed by [16]  are as 

                                 (5) 

NAKAGAMI DISTRIBUTION 

The probability density function (PDF) of NKD is 
given by 

   ,  

 
Where “m” is shape parameter also known as fading 
parameter and “w” is scale parameter. Cumulative 
density function (CDF) is given by 

 
The kth population raw moment 

 
 

This distribution becomes Rayleigh distribution when 
 and one-sided Gaussian distribution         

f . 

L-MOMENTS OF THE NAKAGAMI 
DISTRIBUTION. 

 
We drive L-moments of NKD using Eq. (1-

4). Population L-moments of NKD are. 

  (6) 

 

 

    (7) 
 
Where “G” is defined as, 
 

 
For estimation of its parameters, we just needed first 
two sample l-moments. Although, we can drive 3rd& 
4th L-moment numerically. 
For estimates of parameters we solve the following 
equations. For shape parameter 
“m”,

               (8) 
For the specific value of estimate of m –parameter, 
the right hand side of above equation will be equal to 
left hand side. We can get the sample estimate of 
scale parameter “w” as follows  
 

              (9) 

 
MONTE CARLO SIMULATION & 
DISCUSSION 

For the comparison of two methods of moment’s 
estimation we conducted the Monte Carlo 
experiment. One of the advantages of Monte Carlo 
simulation as compared to the other numerical 
methods that can solve the same problem, is that it is 
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conceptually very simple. It does not require any 
specific knowledge of the form for the solution at 
hand. Simulation are used to mimic the behavior of 
real world system. It is a theoretical approach to 
develop theoretical outputs based on varying input 
data. We compared their RMSE and bias. We used 
Mathematica 9 and R-Language software for this 
purpose. We assumed different parametric value for 
NKD, and performed our experiment with different 
sample size (25, 50,100,250). We repeated each of 
our experiment 10,000 times. Finally, we get the 
RMSEs& bias for estimated parameters as follows: 

 

RMSE =   , and Bias= : 

Where,  are fitted values & are observed values. 
Results are presented in Table 5.1, 5.2& 5.3. We take 
the parametric values m=2,3,5& w = 1.5,2.5,4.5. In 
most of the cases (for small sample sizes as well as 
for large samples sizes) these two quantities i.e. 
RMSE and bias, are less if we use MLM rather than 
MOM. In some cases, bias is near to zero which 
implies that we get unbiased estimate of the 
parameters using MLM in these cases. Our results 
show that as we increase the value of scale parameter 
“w” values of RMSE & Bias increased in case of 
MOM estimation, but in case of MLM estimation 
values of RMSE did not affect too much. On the basis 
of minimum RMSE and biases, it is found that that L-
moments provide better estimates for NKD 
parameters as compared to conventional moments. 

Table-1 Values of RMSE and Bias when “w” =1.5 
          n = 25          n = 50            n = 100           n = 250 
m  MOM MLM MOM MLM MOM MLM MOM MLM 
 

2 

RMSE 0.8075 0.4157 0.8006 0.4315 0.8160 0.4155 0.8293 0.4131 
Bias 0.2128 0.0079 0.2231 -0.0027 0.2175 0.0171 0.2575 -0.0184 

 

3 

RMSE 0.8014 0.3554 0.8285 0.3383 0.8083 0.3419 0.7618 0.3291 
Bias 0.2150 -0.0016 0.1678 0.0004 0.2129 -0.0029 0.2851 0.0015 

 

5 

RMSE 0.7620 0.2705 0.7634 0.2832 0.7648 0.2638 0.8185 0.2602 
Bias 0.2132 -0.0100 0.2388 0.0394 0.2301 0.0054 0.1755 -0.0059 

Table-2 Values of RMSE and Bias when “w” =2.5 
           n = 25            n = 50             n = 100             n = 250 
m   MOM MLM MOM MLM MOM MLM MOM MLM 
 

2 

RMSE 1.3554 0.5350 1.4429 0.5453 1.4116 0.5318 1.4142 0.5179 
Bias 0.6183 0.0221 0.4916 -0.0291 0.4786 0.0021 0.5166 0.0031 

 

3 

RMSE 1.3707 0.4558 1.3631 0.4430 1.4430 0.4502 1.3578 0.4473 
Bias 0.5878 0.0284 0.6169 0.0014 0.5080 -0.0179 0.5312 0.0067 

 

5 

RMSE 1.3746 0.3369 1.4663 0.3415 1.3742 0.3552 1.3825 0.3414 
Bias 0.5717 0.0019 0.4804 0.0004 0.5561 -0.0030 0.5145 -0.0085 

Table-3 Values of RMSE and Bias when “w” =4.5 
            n = 25            n = 50           n = 100             n = 250 
m   MOM MLM MOM MLM MOM MLM MOM MLM 
 

2 

RMSE 2.1731 0.7572 2.0761 0.7449 2.1913 0.7182 2.1434 0.7367 
Bias 1.0366 -0.0021 1.1475 -0.0288 1.0258 0.0021 1.0813 0.0020 

 

3 

RMSE 2.1038 0.5998 2.2497 0.6026 2.0627 0.5860 2.2605 0.6188 
Bias 1.0523 0.0082 0.9382 -0.0313 1.0734 -0.0003 1.0750 0.0055 

 

5 

RMSE 2.2005 0.4939 2.1206 0.4766 2.0759 0.4656 2.2914 0.4859 
Bias 1.1083 -0.0013 1.1414 0.0072 1.2328 0.0016 1.0236 0.0011 
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Conclusion 
 We have derived L-moments of NKD and 
compared the estimates its parameter using MLM 
and MOM. Our comparison is based on RMSE & 
Bias, using simulated data. The comparison shows 
that performance of L-moments is better than 
conventional moments. We found that for small 
samples as well as large samples, L-moments have 
smaller RMSE and bias. So we can conclude that 
L-moments estimation is better for parameter 
estimation of NKD as compared to MOM. 
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