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Abstract  
Spatial interpolation is commonly used to generate water quality surfaces, but different spatial interpolation methods 

yield different surfaces from the same data. The water quality map produced using one model of spatial interpolation 

method may be significantly different from the map produced using another model of the same spatial interpolation 

method. The purpose of this study was to evaluate the performance of different spatial interpolation methods to depict 

the water quality of Lahore correctly. The water samples (n = 73) were collected from tube wells and tested for 

physicochemical parameters (pH, turbidity, hardness, total dissolved solids, alkalinity, calcium, and chlorides). The 

data exploration was performed using SPSS software. The inter-comparison of different powers of inverse distance 

weighting (IDW) and different functions of radial basis functions (RBF) was completed using geostatistical analyst 

extension in ArcGIS 10.3. Moreover, these deterministic interpolation methods (IDW and RBF) were compared with 

geostatistical interpolation methods (ordinary kriging and ordinary co-kriging) based on cross-validation statistics; root 

means square error (RMSE). The analysis showed that ordinary co-kriging performed much better than ordinary 

kriging, RBF, and IDW, for water quality assessment of Lahore. Hence, ordinary co-kriging with appropriate auxiliary 

variable and the best-fitted semi-variogram model was used to generate the spatial distribution map for each water 

quality parameter. The water quality index (WQI) was computed using the tested physicochemical parameters, and the 

results showed that 98% of the tube wells were providing ‘excellent’ to ‘good’ water quality in Lahore city. However, 

there were few areas of City and Anarkali subdivisions where it indicated poor to very poor water quality. The 

procedure used in this study is valuable for the water management authorities to better understand and monitor the 

groundwater quality.  

Keywords: Water Quality Index; Spatial Interpolation; Inverse Distance Weighting (IDW); Radial Basis Functions 

(RBF); kriging; co-kriging 

Introduction 

About one-third of the world’s population relies on 

groundwater for drinking purposes. The scenario is not 

much different in Pakistan as groundwater is the major 

source of drinking water for most Pakistanis. Lack of safe 

drinking water is a major problem in rural as well as urban 

parts of Pakistan [1]. The organic substances and minerals 

present in drinking water can disturb human health, so water 

should be treated before drinking. The safe and sustainable 

use of groundwater requires a regular evaluation of its 

quality. The Water Quality Index (WQI) is considered as an 

effective tool to convey the information about overall water 

quality in a comprehensible and useful manner [2]. An 

important advantage of WQI is that it combines the data 

related to all the tested physicochemical parameters for a 

specific location to produce a single value that makes it very 

easy to understand the overall quality of water at that 

location [3]. 

As water sampling cannot be done at every location, the use 

of procedures that reflect trustworthy estimates of 

groundwater quality have become indispensable for 

monitoring this valuable resource [4]. Nowadays the usage 

of geospatial technologies has smartly reduced the 

complexities involved in the evaluation of natural resources 

and their related environmental concerns. Geographic 

information systems can support in providing a better 

solution to a wide range of problems associated with water 

resources, water availability and water quality assessment at 

a regional or local level.  

The use of spatial interpolation methods to generate water 

quality surfaces for a region, based on data collected from 

sampling, is a common practice worldwide.  The spatial 

interpolation methods mostly used in GIS software include 

Radial Basis Functions (RBF), Inverse Distance Weighting 

(IDW), kriging and co-kriging. The RBF is a simple but 

computationally fast spatial interpolation method that does 

not consider any external variable; rather it uses 

mathematical functions that represent the variable behavior 

with a continuous surface [5]. The RBF surface passes 

through the measured points and can predict beyond the 

maximum and minimum values of the variable.  The method 

yields better results for gradually fluctuating surfaces. It’s 

unsuitable when large differences exist in the surface values 

within a short horizontal distance or when there is a 

suspicion that the sample data is prone to error or 

uncertainty. Being an exact interpolator, it can be locally 

sensitive to outliers [6]. Scientists have applied these 

functions to generate raster data for the estimation of 

groundwater quality. Giang, et al. [7] investigated the 

correlation between arsenic concentrations and tube well 

depth in Thanh Tri, a district located in the southern part of 

Hanoi City, Vietnam. They applied spline with tension and 

completely regularized spline functions of RBF to examine 

their efficiency. The study resulted that both the SWT and 

CRS functions produced reasonable predictions in terms of 

arsenic concentration estimation in groundwater. The IDW 

makes predictions using a linear weighted combination 

based on the inverse of the distance between the points [8]. 

It is computationally fast and has the ability to 
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accommodate barriers that reflect the linear discontinuity in 

the surface. The IDW surface does not pass through the 

samples.  It is recommended when the set of points are 

evenly distributed throughout the area to capture the extent 

of local surface variation needed for analysis [9]. The 

quality of the prediction surface is compromised if the 

sampling points are clustered. Aminu, et al.  [10] measured 

total suspended solids (TSS), dissolved oxygen, ammonia 

nitrate (NH3–N), biochemical and chemical oxygen 

demands (BOD and COD) and pH from seven sampling 

points to examine the water quality of Bertam River, a main 

stream in the rapidly growing tourist destination of 

Cameron Highlands, Malaysia. They preferred IDW 

method for the generation of water quality surface data as it 

is more intuitive and efficient. IDW method has also been 

used in water quality index zonation and in the production 

of spatial distribution maps of water quality parameters 

[11]. Kamińska and Grzywna [12] quantitatively compared 

RBF and IDW with groundwater level data sets of 

Sosnowica, West Polesie, Poland, to determine the accuracy 

of both interpolation methods. They used cross-validation 

statistics based on two criteria: mean error closer to zero, 

and lowest root mean square error (RMSE) to compare both 

interpolation surfaces. The results revealed that RBF 

created the best representation of reality. Kriging method 

uses spatial autocorrelation values among the sampled 

locations to estimate values at unsampled locations. It 

assumes that the data comes from a stationary stochastic 

process and some techniques require that the data be 

normally distributed [13]. The kriging surface does not pass 

through the measured points, and the pixel values can go 

even beyond the value range of samples. In addition to 

prediction maps, prediction standard errors, probability, and 

quantile maps can also be drawn using kriging. In terms of 

computing time, kriging interpolation method is moderately 

fast. Its disadvantage is the requirement of many parameter 

decisions on transformations, trends, models, parameters, 

and neighborhoods for its computation. It suffers limitations 

when there is outlier and nonstationarity in the data. Kriging 

has also been widely used to identify groundwater facies, 

water vulnerability zones [14] and spatial variability of 

water quality parameters. Cokriging can be considered as an 

extension of traditional kriging interpolation to predict the 

less good intensively sampled primary variable of interest 

using intensively sampled auxiliary variables [15]. It is a 

multivariate interpolation method in which one or more 

auxiliary variables that are correlated with the target 

variable can be used for prediction. The literature shows that 

co-kriging has been used for the prediction and estimation 

of groundwater quality parameters [16]. Hooshmand, et al. 

[17] applied kriging and co-kriging methods to evaluate the 

chloride content and sodium adsorption ratio in the 

groundwater of Boukan area, Iran. The estimated and 

observed values of both the parameters were compared 

based on RMSE and coefficient of determination (R2). They 

found co-kriging method more accurate than kriging 

method. 

The use of different spatial interpolation methods yields 

different surfaces from the same data. Each of these 

interpolation methods includes different models with slight 

variations to predict the surfaces, but their accuracy also 

differs greatly. It means that the water quality map produced 

using one model of spatial interpolation method may be 

significantly different from the map produced using another 

model of the same spatial interpolation method. Therefore, 

it is important to have the knowledge of the most suitable 

interpolation method and the model of that interpolation 

method for production of a map that correctly depicts the 

water quality of the study area. 

The comparison of different models of geostatistical 

methods should be based on mean absolute error closer to 

zero and root RMSE as small as possible [6]. The values of 

mean absolute error should be used to determine the best 

method only when the RMSE of two methods are equal 

[18]. As the deterministic interpolation methods IDW and 

RBF provide information about the RMSE, it is appropriate 

to compare deterministic techniques with geostatistical 

techniques based on least RMSE [19]. The cross-validation 

statistics RMSE is calculated using the formula: 

𝑅𝑀𝑆𝐸 =  √ 
[ ∑ {𝑍(𝑥𝑖)−𝑧(𝑥𝑖)}

2𝑛
𝑖=1  ]

𝑛
 (1) 

Where: 

Z(xi) is the predicted value, and z(xi) is the observed 

value at respective spatial 

locations x1, x2,…, xn.  

The RMSE is a widely used statistic to measure the error of 

the prediction surface. It's the least value specifies the most 

accurate predictions [20]. The literature shows that 

researchers have kept smallest RMSE a criterion to choose 

the most suitable interpolation method among different 

kriging types and variogram models [21], besides using it 

for the comparison of different deterministic and 

geostatistical methods [22]. Hence, each spatial distribution 

map should be produced using the model that shows least 

RMSE among all the models of all the spatial interpolation 

methods for that particular water quality parameter. 

In the recent years, a number of studies have been published 

that involve the comparison of spatial interpolation 

methods, but they usually either compare few spatial 

interpolation methods [23-24] for water quality evaluation 

or compare different components of a particular spatial 

interpolation method [25-26]. This paper does not only 

involve the evaluation of deterministic and geostatistical 

spatial interpolation methods in detail, but it also compares 

their associated powers, functions and models. In order to 

evaluate the most suitable spatial interpolation method for 

the groundwater quality assessment of Lahore city, a 

comprehensive geostatistical analysis was required. 

Furthermore, analysis of groundwater quality of Lahore city 

using WQI was also an important issue.  

Syed Umair Shahid et al. 2



Fig. 1: Study area and the sampling locations in Lahore City 

Materials and Methods 

Study area 
Lahore is the second largest metropolitan of Pakistan. It lies 

on the eastern border of Pakistan with India. It is surrounded 

by Sheikhupura District in the northwest and Kasur District 

in the south. The climate here is semi-arid. It is the 

responsibility of the Water and Sanitation Agency (WASA) 

to provide water to the residents of Lahore. It manages the 

water supply from groundwater using more than 480 tube 

wells. The WASA has divided its jurisdiction into 27 

subdivisions covering an area of 245 km2. The study area 

and the sampling locations are shown in figure-1. 

Data collection and data preparation 
A field survey was conducted to collect the water samples 

from the study area. The water samples were collected in 

such a way that they cover the entire area without any 

clustering. The study involved samples from 73 tube wells. 

They were tested for pH, turbidity and total dissolved solids 

using digital meters, whereas, titration method was adopted 

to test chlorides, alkalinity, hardness, and calcium. The 

geographic coordinates of the tube wells and the boundary 

of WASA’s administrative units (sub-divisions) were 

acquired from WASA Lahore. The descriptive statistics of 

the data collected from water testing was analyzed in SPSS 

version 20 software. It was very useful in terms of outlier 

identification. The attribute data containing information 

about the physicochemical parameters was joined with the 

geographic coordinates of the respective sampling points. A 

geodatabase was created in ArcCatalog to keep the data 

integrated. 

Geostatistical analysis 
The first step in the geostatistical analysis is the exploratory 

spatial data analysis (ESDA). The purpose of ESDA is to 

understand the data quantitatively and notice the spatial 

patterns that eventually help in better decision making for 

the construction of interpolation models. There are several 

interpolation methods available in ArcGIS software. In this 

study, the deterministic interpolation methods (IDW and 

RBF) and geostatistical interpolation methods (ordinary 

kriging and ordinary co-kriging) were performed on 73 

sampling points with the help of geostatistical analyst 

extension in ArcGIS 10.3. The IDW method is simple and 

requires very few inputs for the interpolation. IDW 

interpolation was executed on the data set using its powers 

1-4 and the optimal power as well. The power at which the 

prediction surface has smallest RMSE is termed as the 

optimal power. The RBF interpolation makes predictions 
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using kernel functions. The kernel functions used for 

performing RBF involved Completely Regularized Spline, 

Spline with Tension and Thin Plate Spline. Although, every 

RBF kernel is computed using its own equation for 

interpolation yet there exists very little differences among 

them [27].  In order to perform kriging and co-kriging 

interpolations, the data was first analyzed with ESDA tools 

including histograms, normal QQ plots, trend analysis tool 

and semivariogram clouds. Other than exposing the outliers 

in the data, the normal QQ plot and histogram tool help in 

identifying whether data is normally  distributed or not. The 

trend analysis tool shows the trends in the data with respect 

to different directions. The semi variogram cloud shows the 

autocorrelation in the dataset. The models are fitted to the 

semivariogram based on functions. The model functions 

available to fit the empirical semi variogram include 

Rational Quadratic, Circular, Gaussian, Hole Effect, 

Spherical, Tetraspherical, Pentaspherical, J-Bessel, 

Exponential, K-Bessel and Stable. Each of the spatial 

interpolation methods was performed using its different 

powers, functions, and models to analyze their accuracy in 

terms of RMSE. The best model for a particular parameter 

showing least RMSE was used to make the spatial 

distribution map of that water quality parameter. 

Water quality index 
The model builder utility and spatial analyst extension in 

ArcGIS 10.3 software were used to computing the WQI. 

The WQI was based on seven parameters (pH, turbidity, 

chlorides, total dissolved solids, alkalinity, hardness, and 

calcium). These physicochemical parameters were used to 

calculate the relative weights for each parameter. Then the 

WQI was computed at all the seventy-three sampling points 

using the following formula:  

𝑊𝑄𝐼 = 𝐴𝑛𝑡𝑖𝑙𝑜𝑔 [∑ 𝑊 𝑙𝑜𝑔𝑛
𝑛=𝑖 10 𝑞ni]        (2) 

Where: 

Weightage factor (W) was calculated by the following 

equation, 

Wn=
K

Sn

     (3) 

and K, Proportionality constant was derived from, 

𝐾 =  
1

(∑
1

  𝑆i

n

n=i
)

 (4) 

Where: 

Sn and Si are the WHO standard values of the water quality 

parameter. 

Quality rating (q) is calculated using the formula, 

𝑞ni =  
(𝑉actual−𝑉ideal)

(𝑉standard−𝑉ideal)
∗ 100      (5) 

Where: 

 qni = Quality rating of ith parameter for a total of n water 

quality parameters.  

Vactual = Value of the water quality parameter obtained from 

laboratory analysis.  

Videal = Value of that water quality parameter can be 

obtained from the standard tables. 

Videal for pH = 7 and for other parameters it is equal to zero. 

Vstandard = WHO standard of the water quality parameter. 

The point values obtained as a result of computed WQI at 

each sampling point were interpolated using ordinary 

kriging to get the scenario for the whole study area. The 

surface thus generated was comprised of the derived value 

of WQI on each pixel. Hence, it was further classified as 

‘excellent’ for values 0-25, ‘good’ for values 26-50, ‘poor’ 

for values 51-75, ‘very poor’ for values 76-100 and ‘unfit 

for drinking’ for values greater than 100, based on the 

criteria adopted by Shahid, et al. [19] and Asadi, et al. [28]. 

Instead of manual calculations, the major benefits of 

computing WQI in ArcGIS model builder are the reduction 

of errors in large computations and time efficiency. After 

validating the model, the WQI was calculated at a vigorous 

speed of about two minutes with computer specifications as 

follows: 

• Processor: Intel (R) Core(TM) i7-4790 CPU @

3.60 GHz 3.60 GHz

• Installed memory (RAM): 8GB,

• System Type: 64-bit Operating System

If the data scales up, then the computing time may increase 

depending upon the processing capabilities of the computer. 

The data requirements for WQI model are the values of 

water quality parameters at the sampling locations. These 

values can be from any field of the input feature dataset's 

attribute table having data types such as short, integer, float 

or double. The model immediately converts these point 

values to grid rasters, and the calculations are performed in 

raster format. The data types of inputs need to be corrected 

in order to validate and run the WQI model in the model 

builder. The limitations of this approach are that the same 

water quality parameters should be used again to calculate 

the WQI because the subtraction or addition of any water 

quality parameter will require subsequent changes (e.g. 

weightage factor, proportionality constant, constant rasters, 

spatial relationships, etc.) in the model. If different water 

quality parameters are to be evaluated, then the weightage 

factor and the proportionality constant would be manually 

re-calculated, and their constant rasters would be generated 

and adjusted in the model. Secondly, the field names of 

water quality parameters in the attribute table of 

geodatabase feature classes must be same as the field names 

provided in the WQI model.  

The computation of WQI in ArcGIS model builder has 

robust spatial modelling capabilities. The spatial analysis 

flow diagram for WQI was designed in model builder. The 

complex WQI analysis comprising different spatial 

functions was performed, and a resulting WQI map was 

drawn that explained the outcomes of the investigation. The 

datasets used in the model and their weightage can be easily 

modified in future. The results obtained using WQI model 

can also serve as an input for another model. Once a model 

is designed, it can be run with a variety of parameters to 

identify data sensitivity or can be used to evaluate 

geographically different but structurally similar data sets. 

Results and Discussion 
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Table 1: Descriptive statistics for physicochemical parameters 

The descriptive statistics (Table-1) for physicochemical 

parameters showed that pH, TDS, calcium, and chlorides 

values were well within the permissible limits. There was 

only one sample that showed turbidity beyond the threshold 

value of 5 Nephelometric turbidity units (NTU) so it was 

not acceptable. Similarly, the hardness value of one sample 

exceeded the 500 (mg/L) limit. The alkalinity values for all 

the samples were above 120 (mg/L) 

Inverse Distance Weighting 
The IDW uses power function to predict the surfaces. It 

assumes that the local variations have an important role in 

the phenomenon being modelled. Therefore, the number of 

closest neighboring samples affect the precision of IDW 

surface [29]. The greater the power used for IDW 

prediction, lesser the weightage of the farther points in 

prediction. The results showed that the optimal power using 

IDW for turbidity was 3.356, reflecting the fact that the 

farther points had lesser weightage in the interpolation 

process. The range for turbidity values was large, i.e. 0.1 to 

9 NTU (Table-1) having a mean value of turbidity 0.6 NTU, 

yet the resulting surfaces (Figure-2) using IDW 

interpolation resulted in such a way that the area indicating 

turbidity values more than 5 NTU expanded as the power 

used for IDW surface increased. This clearly showed that 

the maximum value 9 NTU has a significant effect in the 

nearest areas due to the limited influence of farther points, 

using greater powers of IDW. On the other hand, if simply 

the IDW power 1 would have been selected in making 

predictions about turbidity than the area influenced by the 

maximum value of turbidity would have been smaller due 

to relatively more weightage of lower values of turbidity, 

even being farther. On the contrary, the variation between 

the pH values was very low, i.e. 6.41 to 8.06. Thus its 

optimal power also lied between 1 and 2, i.e., 1.232. 

Similarly, the optimal powers of other water quality 

parameters could be seen in Table-2 to understand the 

influence of values in predicting the estimates of their 

surroundings. 

Radial Basis Functions 

The RBFs are like a rubber sheet fitted to the sampled 

points. Figure-2b shows that the predicted area having 

turbidity levels more than 5 NTU varied with the RBF 

kernel used. The said area had an expanding trend with 

spline with tension, completely regularized spline and thin 

plate spline, respectively. The results were obtained using 

the optimal kernel parameter for each kernel. The thin plate 

spline is like fitting a rubber sheet to the sampled points with 

the formation of nice curves whereas the spline with tension 

is like pulling the fitted rubber sheet on the edges, hence 

lessening the curves. In the case of turbidity surfaces, the 

area showing values more than 5 NTU was almost equal for 

completely regularized spline kernel and spline with tension 

kernel and their RMSE, as described in Table-3, were also 

smaller than the RMSE of thin plate spline kernel. It might 

be inferences from the results as the sampling points had 

small distances in between and they belong to the same 

aquifer. Hence, there were very few fluctuations in the data. 

So, the spline with tension mostly produced smaller RMSE 

instead of curvy thin plate spline that showed highest RMSE 

for all the water quality parameters among RBF kernels.  

Kriging 
Instead of making predictions based on the inverse of the 

distance between the points as performed in the 

deterministic methods, geostatistical methods make 

predictions based on spatial autocorrelation among the data 

values. They assume that the data must be from a normal 

distribution. As the data of turbidity and pH was close to a 

normal distribution, it did not require the transformation, 

whereas the data of other parameters were not normally 

distributed, so the logarithmic transformation was applied 

to the data before making predictions. The semivariogram 

varies along different angles; the directional influences were 

also incorporated considering the anisotropy. It can be 

inferences from the results in Table-4 that no semi 

variogram model alone most accurately capture the spatial 

dependence of all the water quality parameters because of 

the fact that semi variogram models are merely 

mathematical models that are fitted to read the spatial 

autocorrelation for a particular parameter in the area of 

interest. Due to the substantial spatial variability of different 

water quality parameters in Lahore city, a single semi 

variogram model did not fit all water quality parameters 

equally good. The models showing lowest RMSE among all 

the kriging models for each water quality parameter are 

given in Table 4

Parameter Samples Minimum Maximum Mean Std. 

Deviation 

Desirable 

Limit 

pH  73 6.41 8.06 7.35 0.33 6.5 -8.5 

Turbidity (NTU) 73 0.10 9.00 0.60 1.13 < 5 NTU 

TDS (mg/L) 73 134.00 884.00 311.26 148.72 < 1000 (mg/L) 

Hardness (mg/L) 73 33.33 523.33 150.23 82.70 < 500 (mg/L) 

Calcium (mg/L) 73 12.00 112.00 40.49 17.82 < 200 (mg/L) 

Chlorides (mg/L) 73 1.00 148.22 22.72 26.75 < 250 (mg/L) 

Alkalinity (mg/L) 73 128.10 558.60 260.34 96.73 < 120 (mg/L) 
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Table 2: Inverse Distance Weighting powers and their root mean square error (RMSE) 

Table 3: Radial Basis Function kernels and their RMSE 

Parameter Completely Regularized Spline Spline with Tension Thin Plate Spline 

Turbidity (NTU) 1.110 1.110 1.227 

pH 0.335 0.333 0.375 

Alkalinity (mg/L) 74.136 73.841 90.679 

Calcium (mg/L) 15.736 15.757 16.995 

Chlorides (mg/L) 23.776 23.601 28.348 

Hardness (mg/L) 76.935 76.935 89.765 

TDS (mg/L) 129.752 129.552 153.311 

 Table 4: Details of kriging method with lowest RMSE 

Parameter Transformation applied Anisotropy Model RMSE 

Turbidity (NTU) No True J-Bessel 0.9727 

pH No True Rational Quadratic 0.3220 

Alkalinity (mg/L) Log True J-Bessel 67.8567 

Calcium (mg/L) Log True Hole Effect 15.8498 

Chlorides (mg/L) Log True Rational Quadratic 22.2581 

Hardness (mg/L) Log True Exponential 75.5510 

TDS (mg/L) Log True Exponential 124.961 

Table 5: Showing lowest RMSE obtained from best-fitted semi variogram model using co-kriging method for the 

estimation of each water quality parameter 

Auxiliary variable 

Turbidity pH Alkalinity Calcium Chlorides Hardness TDS 

W
a

te
r
 q

u
a

li
ty

 p
a

ra
m

et
er

 

Turbidity 

(NTU) 

0.968     0.831 1.0374     0.9541     0.9872   0.8136 

JB JB PS JB PS JB 

pH    0.3365 0.3386 0.3072 0.3364 0.3229 0.3346 

SP SP EX GA & ST CR CR 

Alkalinity 

(mg/L) 

64.1056 70.8117 71.6795 55.8167 56.0207 55.8905 

PS CR JB RQ JB EX 

Calcium 

(mg/L) 

14.0301 15.7428 16.8432 16.3083 12.865 13.4551 

HE RQ GA & ST RQ JB HE 

Chlorides 

(mg/L) 

20.5508 22.3661 18.0544 22.2841 17.1778 10.2958 

GA RQ RQ RQ RQ RQ 

Hardness 

(mg/L) 

61.2895 72.2095 48.9595 60.9037 53.1465 39.8010 

CR CR PS ST RQ RQ 

TDS 

(mg/L) 

105.9405 116.071 63.4487 118.6024 84.0342 86.4202 

PS JB KB CR RQ SP 

JB J-Bessel; PS Penta Spherical; SP Spherical; EX Exponential; GA Gaussian; ST Stable; CR Circular; RQ Rational 

Quadratic; HE Hole Effect; KB K-Bessel 

Parameter IDW (1) IDW (2) IDW (3) IDW (4) IDW (optimal) 

Turbidity (NTU) 1.1472 1.1309 1.1237 1.1246 (3.356)     1.1232 

pH 0.3339 0.3353 0.3422 0.3528 (1.228)     0.3338 

Alkalinity (mg/L) 75.5822 73.8884 73.1605 73.3204 (3.27)     73.1289 

Calcium (mg/L) 16.4144 16.1575 16.1029 16.2500 (2.73)     16.0950 

Chlorides (mg/L) 24.1155 23.9875 24.4682 25.3233 (1.70)     23.9582 

Hardness (mg/L) 79.5177 78.1324 78.3067 79.6523 (2.37)     78.0225 

TDS (mg/L) 132.9962 131.1209 131.1964 132.8053 (2.45)     130.918 

Syed Umair Shahid et al. 6



Fig. 2: Showing variation in the results (area having Turbidity >5NTU) obtained using different (a) power of IDW 

and (b) kernels of RBF 

SWT Spline with Tension; CRS Completely Regularized Spline; TPS Thin Plate Spline 

Co-kriging 
The co-kriging method is like kriging model that has an 

additional characteristic of involving an auxiliary variable 

based on which the values of the target variable are 

predicted. Usually, the variable showing highest correlation 

with the target variable is selected as an auxiliary variable. 

Table-5 revealed that the auxiliary variables that showed 

lowest RMSE for the prediction of pH, turbidity, chlorides, 

total dissolved solids, alkalinity, hardness, and calcium 

were calcium, TDS, TDS, Alkalinity, chlorides, TDS and 

hardness, respectively. Similar to the kriging results, no 

semi variogram model alone presented best results using co-

kriging interpolation for all the water quality parameters. 

The smallest RMSE for the prediction of pH, turbidity, 

chlorides, total dissolved solids, alkalinity, hardness, and 

calcium were 0.3072, 0.8136, 10.2958, 63.4487, 55.8167, 

39.8010 and 12.865 using co-kriging models Exponential, 

J-Bessel, Rational Quadratic, K-Bessel, Rational Quadratic, 

Rational Quadratic, and J-Bessel, respectively. After 

examining the results described in Tables 2-5, it clearly 

indicated that the RMSE using co-kriging method were 

quite lower than the other three spatial interpolation 

methods used in this study. The reason for such a lower 

RMSE was the use of highly appropriate auxiliary variables. 

For instance, the RMSE for the prediction of chlorides using 

TDS as an auxiliary variable was much lower than using 

turbidity. It could be justified as chlorides were also a 

component of TDS concentrations in water. Similarly, the 

lowest RMSE for the prediction of calcium was obtained 

using hardness as an auxiliary variable. Shahid, et al. [19] 

and Khosravi, et al. [22] also compared different 

deterministic and geostatistical techniques and found co-

kriging is the best method for modeling spatial distribution 

of groundwater quality. 

Spatial distribution maps  
The spatial distribution map of pH (Figure-3) indicated that 

the water is provided in the city is neither severely acidic 

nor extremely basic in nature. According to World Health 

Organization (WHO) guidelines, the pH of the water should 

be between 6.5 -8.5. If the water has a very low value of pH, 

it may be toxic, and if its value is very high, then it may have 

a bitter taste. Turbidity is mainly a result of suspended 

particles in water. Usually a variety of smaller particles e.g. 

decaying plants, clay, silt, etc. can be found in water which 

contributes to turbidity. The WHO standard for turbidity in 
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drinking water is 5 NTU. The turbidity map indicated that 

only in the upper northern parts of the study area the 

turbidity values had crossed WHO standard for turbidity in 

drinking water, whereas, in rest of the areas it is within the 

desirable limits. The biological problems may arise in these 

areas as water turbidity is directly associated with the 

growth of pathogens. The chloride concentrations should be 

below 250 (mg/L) in drinking water. It is inferred from the 

chlorides map that there was no issue in the study area in 

terms of chlorides concentrations as it remained under 160 

(mg/L) in the entire study area. The alkalinity map showed 

that most of the areas have alkalinity above 150 (mg/L). The 

southeastern parts of the study area had even higher values 

of alkalinity, but its concentration mostly below 500 (mg/L) 

was not a serious threat to the population, rather the 

aesthetic issues might arise due to higher alkalinity in those 

areas. Calcium is not only a significant component of 

human bones and teeth, but it also assists as a signal in 

important physiological processes. The calcium intake 

through drinking water can be important for people who are 

deficient in it [30]. The calcium intake is inversely 

correlated with blood pressure [31]. The calcium 

concentration map in Figure-4 revealed that there was no 

tube well in the study area having values even higher than 

100 (mg/L). There is absolutely no issue regarding 

excessive calcium concentrations in the study area. As 

calcium is an important component of hardness in water, the 

hardness map showed that the areas are having higher 

values of hardness, e.g., in the central northern parts of the 

study area, also had relatively higher values in the calcium 

map. The reason for calcium and water hardness might be 

the presence of limestone in the alluvial deposits underlain 

the study area. People from different communities can have 

varying water hardness acceptability. Depending on the 

interactions, a hardness greater than 200 (mg/L) together 

with alkalinity and pH may be a cause of scale deposition in 

water tanks, distribution systems, treatment plants, etc. The 

weight of residue left after a water sample is evaporated to 

dryness is denoted by the TDS in water. According to WHO 

guidelines, water with TDS value less than 600 (mg/L) is 

generally acceptable to the people in terms of its taste. The 

TDS map showed that the TDS concentrations were highly 

variable in the study area. It might be due to the presence of 

different solubility materials in the aquifer. The lesser 

concentrations were near river Ravi, and they increased 

towards the east. There were a patch showing TDS 

concentrations higher than 500 (mg/L) in the central upper 

half of the study area, i.e., Anarkali subdivision. In order to 

calculate the WQI, the relative weights for seven 

physicochemical parameters were calculated using Eqs. (3) 

and (4). In these equations, the standardized values of Sn and 

Si for pH, turbidity, chlorides, total dissolved solids, 

alkalinity, hardness and calcium were 8.5, 5 NTU, 250 

(mg/L), 1000 (mg/L), 120 (mg/L), 500(mg/L)  and 200 

(mg/L) , respectively. Hence, the relative weights for pH, 

turbidity, chlorides, total dissolved solids, alkalinity, 

hardness, and calcium were 0.34808, 0.59175, 0.01183, 

0.00296, 0.02466, 0.00592, and 0.01479, respectively. 

Equation (5) was used to compute the quality ratings for 

each parameter, and the final results were obtained by using 

equation (2). Although the range of WQI varies from 1.83 

to 91.93 most of the samples, i.e., 66 out of 73, had shown 

WQI value less than 25 so they fall into the category of 

‘excellent’ water quality. Similarly, 6 out of 73 samples 

were regarded as ‘good’ with WQI values ranging between 

25 to 50 and only one sample having 91.93 WQI value fall 

into ‘very poor’ category. The main reason for this high 

value of WQI was a high value of turbidity, i.e., 9 NTU. The 

WASA installs a tube well only after clearance of water 

quality examination. As the water from surrounding tube 

wells does not have such a high turbidity level, it could be 

inferenced as this area is densely populated and the water 

extraction has increased significantly, the resulting water-

table drawdown exerts pressure on the surrounding areas for 

more water intrusion. As a result, a solid material/stone with 

immense water pressure may have caused a rupture in ‘fiber 

glass’ screen of the tube well, which eventually increased 

the water turbidity. Overall the water quality index map 

(Figure-5) showed that the physicochemical water quality in 

Lahore city was acceptable. Some areas like Farrukhabad, 

Gulberg, City and Johar Town had good water quality. 

However, there were some patches in Anarkali area where 

the physicochemical quality of water was determined as 

poor to very poor. Chattergee et al. [32] applied the same 

WQI on surface water and shallow wells in coal mining area 

of Jharkhand, India. He also found the majority of the area 

showing physicochemical WQI excellent to good, but some 

areas were identified having poor to unfit for drinking water 

quality. In our study, all these tube wells are in the deep 

aquifer, so they are safe from the contamination caused by 

anthropogenic activities. Hence, the WQI for most of the 

areas is satisfactory. However, there might be issues 

regarding bacteriological water quality. 
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Fig. 3: Spatial distribution maps of (a) pH, (b) turbidity, (c) chlorides and (d) alkalinity in Lahore City. 
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Fig. 4: Spatial distribution maps of (a) calcium, (b) hardness and (c) TDS in Lahore City 
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Water quality index 

Fig. 5: Water quality index map of Lahore City 
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Conclusions 

The spatial distribution maps and water quality index maps 

which nowadays play a key role in the water quality 

management are a product of GIS tools and spatial 

interpolation methods. The convenience of using readily 

available spatial interpolation methods pave a way to 

investigate more and more techniques to find the most 

suitable one for each water quality parameter so as to 

represent the true picture of existing water quality. The 

intercomparison of the IDW powers showed that the 

optimal power for variable increases as the spatial variation 

in the data increases. The less curvy spline with tension 

produced better results in the intercomparison of RBF 

kernels. As the data of water quality parameters did not have 

too many fluctuations, the RMSE values using RBF were 

generally lower than using IDW method. Hence, it indicates 

that the interpolation based on RBF is better among 

deterministic methods when we have minor variations in the 

data because it results in the smoother surfaces. However, 

the use of statistically strong geostatistical methods for 

spatial interpolation outperformed the deterministic 

methods in this study. The spatial distribution maps of each 

parameter were generated using different models of a co-

kriging method that showed lowest RMSE so as to get more 

reliable predictions.  

The WQI is an appropriate tool for analyzing the water 

quality of a large area at ease. The results of WQI indicated 

that the physicochemical water quality was mostly within 

the desired limits in Lahore. As this study analyzed the 

water samples from tube wells, it is highly recommended 

that the people instead of taking drinking water from house 

taps should get it directly from point-of-use water treatment 

systems or taps nearest to tube wells so as to avoid presence 

of harmful pathogens normally observed in the water 

distribution system due to leakage from sewage lines and 

old pipelines. As some of the water quality parameters had 

relatively higher concentrations in the Anarkali subdivision 

and nearby areas, the WASA authorities should take this 

issue seriously and set up filtration plants in the area. It is 

recommended that a further study with increased number of 

water samples in that area should be conducted to get 

detailed information about the spatial variability of physio-

chemical parameters in that region. Moreover, the 

procedure adopted in this study to determine a reliable 

prevailing scenario about water quality is valuable for the 

water management authorities to better understand and 

monitor the groundwater quality and implement a revised 

water quality strategy in future. 
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